A Potential Role of the Inferior Frontal Gyrus and Anterior Insula in Cognitive Control, Brain Rhythms, and Event-Related Potentials

Experimental Psychology, University of Groningen Groningen, Netherlands.
Frontiers in Psychology (Impact Factor: 2.8). 11/2011; 2:330. DOI: 10.3389/fpsyg.2011.00330
Source: PubMed


IN THE PRESENT PAPER, WE REVIEW EVIDENCE FOR OF A MODEL IN WHICH THE INFERIOR FRONTAL GYRUS/ANTERIOR INSULA (IFG/AI) AREA IS INVOLVED IN ELABORATE ATTENTIONAL AND WORKING MEMORY PROCESSING AND WE PRESENT THE HYPOTHESIS THAT THIS PROCESSING MAY TAKE DIFFERENT FORMS AND MAY HAVE DIFFERENT EFFECTS, DEPENDING ON THE TASK AT HAND: (1) it may facilitate fast and accurate responding, or (2) it may cause slow responding when prolonged elaborate processing is required to increase accuracy of responding, or (3) it may interfere with accuracy and speed of next-trial (for instance, post-error) performance when prolonged elaborate processing interferes with processing of the next stimulus. We present our viewpoint that ventrolateral corticolimbic control pathways, including the IFG/AI, and mediodorsal corticolimbic control pathways, including dorsal anterior cingulate cortex areas, play partly separable, but interacting roles in adaptive behavior in environmental conditions that differ in the level of predictability: compared to dorsal feed-forward control, the ventral corticolimbic control pathways implement control over actions through higher responsiveness to momentary environmental stimuli. This latter control mode is associated with an attentional focus on stimuli that are urgent or close in time and space, while the former control mode is associated with a broader, more global focus in time and space. Both control pathways have developed extensively through evolution, and both developed their own "cognitive controls," such that neither one can be properly described as purely "cognitive" or "emotional." We discuss literature that suggests that the role of IFG/AI in top-down control is reflected in cortical rhythms and event-related potentials. Together, the literature suggests that the IFG/AI is an important node in brain networks that control cognitive and emotional processing and behavior.

1 Follower
13 Reads
  • Source
    • "17 PARCS does not describe just two systems ( one being reactive and the other being predictive ) , nor does it only include systems that are either purely reactive or purely predictive ( Tops et al . , 2010 , 2014a , b ; Tops and Boksem , 2011 ) . 17 As Barsalou ( 1999 , 2008 ) stated , these simulations are not likely to function like a complete simulation of the original perceptual state , but are likely to be incomplete ( and function much like a Gestalt ) , while specific goals are likely to call on activating different parts of the convergence zones we have alluded to . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Beyond breathing, the regulation of body temperature—thermoregulation—is one of the most pressing concerns for many animals. A dysregulated body temperature has dire consequences for survival and development. Despite the high frequency of social thermoregulation occurring across many species, little is known about the role of social thermoregulation in human (social) psychological functioning. We outline a theory of social thermoregulation and reconsider earlier research on people's expectations of their social world (i.e., attachment) and their prediction of the social world. We provide support and outline a research agenda that includes consequences for individual variation in self-regulatory strategies and capabilities. In our paper, we discuss physiological, neural, and social processes surrounding thermoregulation. Emphasizing social thermoregulation in particular, we appeal to the economy of action principle and the hierarchical organization of human thermoregulatory systems. We close with future directions of a crucial aspect of human functioning: the social regulation of body temperature.
    Frontiers in Psychology 05/2015; 6. DOI:10.3389/fpsyg.2015.00464 · 2.80 Impact Factor
  • Source
    • "Disentangling the degree to which processes are representational or computational or not is a simple task. New models that propose a combination of such approaches such as PARCS (Tops et al., 2011) offer a compelling alternative to the all or none approach often represented in the current debates over embodiment. We have endeavored to offer a view of attachment that promotes thinking about the underlying cognitive and neurobiological processes in novel ways, and expands the toolkit we use to approach questions surrounding attachment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Attachment theory (Bowlby, 1969/1982) posits that internal working models are a foundational feature of human bonds. Radical embodied approaches suggest that cognition requires no computation or representation, favoring a cognition situated in a body in context with affordances for action (Barrett, 2011; Chemero, 2009; Wilson & Golonka, 2013). We explore whether embodied approaches to social soothing, interpersonal warmth, separation distress, and support seeking could replace representational constructs such as internal working models with a view of relationship cognition anchored in the resources afforded to the individual by their brain, body, and environment interacting. We review the neurobiological bases for social attachments and relationships and attempt to delineate how these systems overlap or don’t with more basic physiological systems in ways that support or contradict a radical embodied explanation. We suggest that many effects might be the result of the fact that relationship cognition depends on and emerges out of the action of neural systems that regulate several clearly physically grounded systems. For example, the neuropeptide oxytocin appears to be central to attachment and pair-bond behavior (Carter & Keverne, 2002) and is implicated in social thermoregulation, being necessary for maintaining a warm body temperature in rats (Kasahara et al., 2007) and humans (Beck et al., 1979). Finally, we discuss the most challenging issues around taking a radically embodied perspective on social relationships. We find the most crucial challenge in individual differences in support seeking and responses to social contact, which have long been thought to be a function of representational structures in the mind (e.g., Baldwin, 1995). Together we entertain the thought to explain such individual differences without mediating representations or computations ending with a discussion of how representational approaches might be integrated with embodied approaches.
    SSRN Electronic Journal 01/2014; 9. DOI:10.2139/ssrn.2429522
  • Source
    • "It has been suggested that the inferior frontal gyrus and anterior insula areas are involved in complex attentional and working memory processing. Possibly, these brain areas are involved in cognitive control related to attentional focus on stimuli that are urgent or close in time and space [17], and it is unclear how such functions relate to reduced activation. Moreover, the right fronto-insular cortex has been implicated in a wide range of cognitive control mechanisms involved in a variety of cognitive control processes, including conflict and error monitoring, interference resolution, and response selection [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background In patients with schizophrenia, altered brain activation and motor activity levels are central features, reflecting cognitive impairments and negative symptoms, respectively. Newer studies using nonlinear methods have addressed the severe disturbances in neurocognitive functioning that is regarded as one of the core features of schizophrenia. Our aim was to compare brain activation and motor activity in a patient during pharmacological treatment that was switched from a first- to a second-generation antipsychotic drug. We hypothesised that this change of medication would increase level of responding in both measures. Case presentation We present the case of a 53-year-old male with onset of severe mental illness in adolescence, ICD-10 diagnosed as schizophrenia of paranoid type, chronic form. We compared brain activation and motor activity in this patient during pharmacological treatment with a first-generation (perphenazin), and later switched to a second-generation (risperidone) antipsychotic drug. We used functional magnetic resonance imaging (fMRI) to measure brain activation and wrist worn actigraphy to measure motor activity. Conclusion Our study showed that brain activation decreased in areas critical for cognitive functioning in this patient, when changing from a first to a second generation antipsychotic drug. However the mean motor activity level was unchanged, although risperidone reduced variability, particularly short-term variability from minute to minute. Compared to the results from previous studies, the present findings indicate that changing to a second-generation antipsychotic alters variability measures towards that seen in a control group, but with reduced brain activation, which was an unexpected finding.
    BMC Research Notes 08/2013; 6(1):332. DOI:10.1186/1756-0500-6-332
Show more

Preview (2 Sources)

13 Reads
Available from