Solvent exposures and Parkinson disease risk in twins.

The Parkinson's Institute, 675 Almanor Avenue, Sunnyvale, CA 94085, USA.
Annals of Neurology (Impact Factor: 11.91). 06/2012; 71(6):776-84. DOI: 10.1002/ana.22629
Source: PubMed

ABSTRACT Several case reports have linked solvent exposure to Parkinson disease (PD), but few studies have assessed associations with specific agents using an analytic epidemiologic design. We tested the hypothesis that exposure to specific solvents is associated with PD risk using a discordant twin pair design.
Ninety-nine twin pairs discordant for PD ascertained from the National Academy of Sciences/National Research Council World War II Veteran Twins Cohort were interviewed regarding lifetime occupations and hobbies using detailed job task-specific questionnaires. Exposures to 6 specific solvents selected a priori were estimated by expert raters unaware of case status.
Ever exposure to trichloroethylene (TCE) was associated with significantly increased risk of PD (odds ratio [OR], 6.1; 95% confidence interval [CI] 1.2-33; p = 0.034), and exposure to perchloroethylene (PERC) and carbon tetrachloride (CCl(4) ) tended toward significance (respectively: OR, 10.5; 95% CI, 0.97-113; p = 0.053; OR, 2.3; 95% CI, 0.9-6.1; p = 0.088). Results were similar for estimates of exposure duration and cumulative lifetime exposure.
Exposure to specific solvents may increase risk of PD. TCE is the most common organic contaminant in groundwater, and PERC and CCl(4) are also ubiquitous in the environment. Our findings require replication in other populations with well-characterized exposures, but the potential public health implications are substantial.

Download full-text


Available from: James W. Langston, Jul 01, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Juxtaposed alongside the ongoing rise in the incidence and prevalence of dementia, is the surge of recent research confirming widespread exposure and bioaccumulation of chemical toxicants. Evidence from sources such as the Centers for Disease Control reveals that most people have accrued varying degrees of assorted toxic pollutants including heavy metals, flame retardants, and pesticide residues within their bodies. It has been well established that many of these toxicants have neurodegenerative as well as neurodevelopmental impact as a result of various pathophysiologic mechanisms including neuronal mitochondrial toxicity and disruption of neurotransmitter regulation. Elimination of stockpiled toxicants from the body may diminish adverse toxicant impact on human biology and allow restoration of normal physiological function. Incorporating a review of medical literature on toxicant exposure and dementia with a case history of a lead-exposed individual diagnosed with dementia, this paper will discuss a much overlooked and potentially widespread cause of declining brain function and dementia.
    Behavioural neurology 02/2015; Article ID 620143. DOI:10.1155/2015/620143 · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson disease (PD) is a degenerative movement disorder that results from the destruction of dopaminergic neurons in the midbrain substantia nigra. Both genetic and environmental factors contribute to PD risk, and likely to age at diagnosis. Among 258 newly diagnosed non-Hispanic Caucasian cases from Group Health Cooperative in western Washington State, we assessed whether diagnosis age was associated with 1,327 single nucleotide polymorphisms in genes related to central nervous system function, oxidative stress, inflammation or metal transport. We conducted linear regression to assess the age difference per variant allele while adjusting for sex and smoking. Of the polymorphisms associated with PD diagnosis age (ptrend<0.05), three demonstrated similar associations among 64 PD cases from the University of Washington Neurology Clinic, were not similarly associated (pinteraction<0.05) with age in general among 436 unrelated non-Hispanic Caucasian controls from the source population, and were predicted to be functional according to a public National Institute of Environmental Health Sciences polymorphism database. The most robust association was for rs10889162, a polymorphism in a predicted transcription factor binding site -582 bp from CYP2J2 arachidonic acid epoxygenase. Each variant allele was associated with 5.04 years older diagnosis age (95% confidence interval 2.28-7.80, p=0.0003). This association did not vary by sex or smoking history. Polymorphisms in predicted microRNA binding sites in GSTM5 and SLC11A2 were also associated with >2-year differences in diagnosis age. These results await confirmation in other series of incident cases, but suggest that selected genes and environmental exposures may influence PD diagnosis age.
    International Journal of Molecular Epidemiology and Genetics 01/2013; 4(1):61-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exposure of the human population to environmental contaminants is recognized as a significant contributing factor for the development of Parkinson's disease (PD) and other forms of parkinsonism. While pesticides have repeatedly been identified as risk factors for PD, these compounds represent only a subset of environmental toxicants that we are exposed to on a regular basis. Thus, non-pesticide contaminants, such as metals, solvents, and other organohalogen compounds have also been implicated in the clinical and pathological manifestations of these movement disorders and it is these non-pesticide compounds that are the subject of this review. As toxic exposures to these classes of compounds can result in a spectrum of PD or PD-related disorders, it is imperative to appreciate shared clinico-pathological characteristics or mechanisms of action of these compounds in order to further delineate the resultant disorders as well as identify improved preventive strategies or therapeutic interventions.
    NeuroToxicology 01/2012; 33(2):178-88. DOI:10.1016/j.neuro.2012.01.010 · 3.05 Impact Factor