Breast epithelial cell proliferation is markedly increased with short-term high levels of endogenous estrogen secondary to controlled ovarian hyperstimulation

Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Breast Cancer Research and Treatment (Impact Factor: 3.94). 11/2011; 132(2):653-60. DOI: 10.1007/s10549-011-1870-y
Source: PubMed

ABSTRACT Oocyte donors have high serum estradiol (E2) levels similar to the serum levels seen in the first trimester of pregnancy. We report in this article our studies comparing cell proliferation, Ki67 (MIB1), and estrogen and progesterone receptor levels (ERα, PRA, and PRB) in the breast terminal duct lobular units of oocyte donors, women in early pregnancy, and in normally cycling women. Breast tissue and blood samples were obtained from 10 oocyte donors, and 30 pregnant women at 5-18 weeks of gestation. Breast tissue samples were also obtained from 26 normally cycling women. In the oocyte donors: peak E2 (mean ~15,300 pmol/l) was reached on the day before oocyte (and tissue) donation; peak progesterone (P4; mean 36.3 nmol/l) was reached on the day of donation; Ki67 was positively associated with level of E2, and the mean Ki67 was 7.0% significantly greater than the mean 1.8% of cycling women. In the pregnant women: mean E2 rose from ~2,000 pmol/l at 5 weeks of gestation to ~27,000 pmol/l at 18 weeks; mean P4 did not change from ~40 nmol/l until around gestational week 11 when it increased to ~80 nmol/l; mean Ki67 was 15.4% and did not vary with gestational age or E2. Oocyte donors have greatly increased levels of E2 and of breast-cell proliferation, both comparable in the majority of donors to the levels seen in the first trimester of pregnancy. Whether their short durations of greatly increased E2 levels are associated with any long-term beneficial effects on the breast, as occurring in rodent models, is not known.

8 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regular green tea intake has been associated with an inverse risk of breast cancer. There are compelling experimental evidence that green tea, particularly, epigallocatechin gallate, the most potent green tea catechin, possesses a range of anti-cancer properties. We conducted a pre-surgical study of green tea capsules vs. no-green tea in women with primary breast cancer to determine the effects of green tea supplementation on markers of biological response. Postmenopausal women with ductal carcinoma in situ (DCIS) or stage I or II breast cancer took green tea capsules (940 mg per day) for an average of 35 days prior to surgery (n = 13) or received no green tea (n = 18). Paired diagnostic core biopsy and surgical specimen samples were analyzed for cell proliferation (Ki-67), apoptosis (caspase-3), and angiogenesis (CD34) separately in benign and malignant cell components. There were no significant changes in caspase-3 and CD34 in the green tea and no green tea groups and there were no significant differences in the change in these markers between the two groups. However, Ki-67 levels declined in both benign and malignant cell components in the green tea group; the decline in Ki-67 positivity in malignant cells was not statistically significant (P = 0.10) but was statistically significant in benign cells (P = 0.007). Ki-67 levels in benign and malignant cells did not change significantly in the no green tea group. There was a statistically significant difference in the change in Ki-67 in benign cells (P = 0.033) between the green tea and the no green tea groups. The trend of a consistent reduction in Ki-67 in both benign and malignant cells in the green tea group warrants further investigations in a larger study of breast cancer patients or high-risk women.
    Frontiers in Oncology 12/2013; 3:298. DOI:10.3389/fonc.2013.00298
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.
    Cell stem cell 06/2013; 13(1). DOI:10.1016/j.stem.2013.05.004 · 22.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammographic density (MD), representing connective and epithelial tissue (fibroglandular tissue, FGT) is a major risk factor for breast cancer. In an analysis of an autopsy series (Bartow SA, Pathak DR, Mettler FA. Radiographic microcalcification and parenchymal patterns as indicators of histologic "high-risk" benign breast disease. Cancer 1990; 66: 1721-1725, Bartow SA, Pathak DR, Mettler FA et al. Breast mammographic pattern: a concatenation of confounding and breast cancer risk factors. Am J Epidemiol 1995; 142: 813-819), MD was found to be strongly correlated with the collagen and epithelial content of the breast (Li T, Sun L, Miller N et al. The association of measured breast tissue characteristics with MD and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 2005; 14: 343-349), and another report showed that breast epithelium was highly concentrated in the areas of collagen concentration (Hawes D, Downey S, Pearce CL et al. Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity. Breast Cancer Res 2006; 8: R24). Collagen comprises the overwhelming majority of the FGT, occupying an area on the slides obtained from the autopsy series some 15 times the area of glandular tissue. The relationship of MD with breast cancer risk appears likely to be due to a major extent to increasing epithelial cell numbers with increasing MD. FGT is also seen in breast magnetic resonance imaging (breast MRI) and, as expected, it has been shown that this measure of FGT (MRI-FGT) is highly correlated with MD. A contrast-enhanced breast MRI shows that normal FGT 'enhances' (background parenchymal enhancement, BPE) after contrast agent is administered(Morris EA. Diagnostic breast MR imaging: current status and future directions. Radiol Clin North Am 2007; 45: 863-880, vii., Kuhl C. The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 2007; 244: 356-378), and a recent study suggests that BPE is also a major breast cancer risk factor, possibly as important as, and independent of MD (King V, Brooks JD, Bernstein JL et al. BPE at breast MR imaging and breast cancer risk. Radiology 2011; 260: 50-60). BPE is much more sensitive to the effects of menopause and tamoxifen than is FGT (King V, Gu Y, Kaplan JB et al. Impact of menopausal status on BPE and fibroglandular tissue on breast MRI. Eur Radiol 2012; 22: 2641-2647, King V, Kaplan J, Pike MC et al. Impact of tamoxifen on amount of fibroglandular tissue, BPE, and cysts on breast MRI. Breast J 2012; 18: 527-534). Changes in MD and BPE may be most useful in predicting response to chemopreventive agents aimed at blocking breast cell proliferation. More study of the biological basis of the effects of MD and BPE is needed if we are to fully exploit these factors in developing chemopreventive approaches to breast cancer. © The Author 2013. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.
    Annals of Oncology 10/2013; 24(suppl 8):viii37-viii41. DOI:10.1093/annonc/mdt310 · 7.04 Impact Factor

Preview (2 Sources)

8 Reads
Available from