Article

The Chp1-Tas3 core is a multifunctional platform critical for gene silencing by RITS.

Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 11/2011; 18(12):1351-7. DOI: 10.1038/nsmb.2151
Source: PubMed

ABSTRACT RNA interference (RNAi) is critical for the assembly of heterochromatin at Schizosaccharomyces pombe centromeres. Central to this process is the RNA-induced initiation of transcriptional gene silencing (RITS) complex, which physically anchors small noncoding RNAs to chromatin. RITS includes Ago1, the chromodomain protein Chp1, and Tas3, which forms a bridge between Chp1 and Ago1. Chp1 is a large protein with no recognizable domains, apart from its chromodomain. Here we describe how the structured C-terminal half of Chp1 binds the Tas3 N-terminal domain, revealing the tight association of Chp1 and Tas3. The structure also shows a PIN domain at the C-terminal tip of Chp1 that controls subtelomeric transcripts through a post-transcriptional mechanism. We suggest that the Chp1-Tas3 complex provides a solid and versatile platform to recruit both RNAi-dependent and RNAi-independent gene-silencing pathways for locus-specific regulation of heterochromatin.

0 Followers
 · 
155 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mit1 is the putative chromatin remodeling subunit of the fission yeast Snf2/HDAC repressor complex (SHREC) and is known to repress transcription at regions of heterochromatin. However, how Mit1 modifies chromatin to silence transcription is largely unknown. Here we report that Mit1 mobilizes histone octamers in vitro and requires ATP hydrolysis and conserved chromatin tethering domains including a previously unrecognized chromodomain to remodel nucleosomes and silence transcription. Loss of Mit1 remodeling activity results in nucleosome depletion at specific DNA sequences that display low intrinsic affinity for the histone octamer, but its contribution to antagonizing RNA Pol II access and transcription is not restricted to these sites. Genetic epistasis analyses demonstrate that SHREC subunits and the transcription coupled Set2 histone methyltransferase, which is involved in suppression of cryptic transcription at actively transcribed regions, cooperate to silence heterochromatic transcripts. In addition, we demonstrate that Mit1's remodeling activity contributes to SHREC function independently of Clr3's histone deacetylase activity on histone H3 K14. We propose that Mit1 is a chromatin remodeling factor that cooperates with the Clr3 histone deacetylase of SHREC and other chromatin modifiers to stabilize heterochromatin structure and to prevent access to the transcriptional machinery.
    Molecular and Cellular Biology 03/2014; 34(11). DOI:10.1128/MCB.01609-13 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.
    Protein & Cell 04/2014; DOI:10.1007/s13238-014-0049-9 · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterochromatin underpins gene repression, genome integrity and chromosome segregation. In the fission yeast, Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing at a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities, and hence represent novel chemical probes for heterochromatin formation and function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Molecular and Cellular Biology 01/2014; 35(4):MCB.01102-14. DOI:10.1128/MCB.01102-14 · 5.04 Impact Factor

Full-text (2 Sources)

Download
38 Downloads
Available from
Jun 1, 2014