Increased Y-chromosome resolution of haplogroup O suggests genetic ties between the Ami aborigines of Taiwan and the Polynesian Islands of Samoa and Tonga

College of Medicine, Florida International University, Miami, FL 33199, USA.
Gene (Impact Factor: 2.14). 11/2011; 492(2):339-48. DOI: 10.1016/j.gene.2011.10.042
Source: PubMed


The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the "slow boat" model being the most widely accepted, though other conjectures (i.e., the "express train" and "entangled bank" hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). We find that, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the majority of the paternal Polynesian gene pool exhibits ties to East Asia. In particular, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian populations and the Ami.

1 Follower
22 Reads
  • Source
    • "Recently, a study of Y chromosome variation in Tongans and Samoans has identified a high frequency of the Asian derived O3a2c-P164 Y chromosome haplotype, reaching levels as high as 53% in Tonga. This haplotype was also found in the Ami indigenous peoples of Taiwan, providing the first direct link between Taiwan and Polynesia (Mirabal et al., 2012). Unfortunately, to date, few other populations in Island Southeast Asia and the Pacific have been assayed for the P164 marker, and it is possible that many more of the Pacific Y chromosomes that are on the O3 branch may also carry this marker. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Pacific region provides unique opportunities to study human evolution including through analyses of ancient DNA. While some of the earliest studies involving ancient DNA from skeletal remains focused on Pacific samples, in the following 25 years, several factors meant that little aDNA research, particularly research focused on human populations, has emerged. This paper briefly presents the genetic evidence for population origins, reviews what ancient DNA work has been undertaken to address human history and evolution in the Pacific region, and argues that the future is bright but research requires a collaborative approach between academic disciplines but also with local communities.
    Journal of Human Evolution 02/2015; 79. DOI:10.1016/j.jhevol.2014.10.017 · 3.73 Impact Factor
  • Source
    • "Populations that first went south from Southeast Asia along or from the Indochinese peninsula, Malaysia, western Indonesia (Sumatra, Java, and Borneo) and the Philippines represent the southern branch of the pincer model. This dispersal would include haplogroups O1a1*-P203, O2a1-M95/M88, O3a*-M324, O3a1a-M121, O3a1c*-IMS-JST002611, O3a2*-P201 , O3a2a-M159, O3a2b*-M7, O3a2c*-P164 and O3a2c1a-M133 [14,26,27,67,78]. For most of these haplogroups, it is currently held that they first expanded and diversified within the boundaries of present-day southeast China, Indochina and Indonesia, and they are considered as involved in a Paleolithic contribution from mainland Asia by Karafet et al. [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Much of the data resolution of the haploid non-recombining Y chromosome (NRY) haplogroup O in East Asia are still rudimentary and could be an explanatory factor for current debates on the settlement history of Island Southeast Asia (ISEA). Here, 81 slowly evolving markers (mostly SNPs) and 17 Y-chromosomal short tandem repeats were used to achieve higher level molecular resolution. Our aim is to investigate if the distribution of NRY DNA variation in Taiwan and ISEA is consistent with a single pre-Neolithic expansion scenario from Southeast China to all ISEA, or if it better fits an expansion model from Taiwan (the OOT model), or whether a more complex history of settlement and dispersals throughout ISEA should be envisioned. We examined DNA samples from 1658 individuals from Vietnam, Thailand, Fujian, Taiwan (Han, plain tribes and 14 indigenous groups), the Philippines and Indonesia. While haplogroups O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 follow a decreasing cline from Taiwan towards Western Indonesia, O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 decline northward from Western Indonesia towards Taiwan. Compared to the Taiwan plain tribe minority groups the Taiwanese Austronesian speaking groups show little genetic paternal contribution from Han. They are also characterized by low Y-chromosome diversity, thus testifying for fast drift in these populations. However, in contrast to data provided from other regions of the genome, Y-chromosome gene diversity in Taiwan mountain tribes significantly increases from North to South. The geographic distribution and the diversity accumulated in the O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 haplogroups on one hand, and in the O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 haplogroups on the other, support a pincer model of dispersals and gene flow from the mainland to the islands which likely started during the late upper Paleolithic, 18,000 to 15,000 years ago. The branches of the pincer contributed separately to the paternal gene pool of the Philippines and conjointly to the gene pools of Madagascar and the Solomon Islands. The North to South increase in diversity found for Taiwanese Austronesian speaking groups contrasts with observations based on mitochondrial DNA, thus hinting to a differentiated demographic history of men and women in these populations.
    BMC Genetics 06/2014; 15(1):77. DOI:10.1186/1471-2156-15-77 · 2.40 Impact Factor
  • Source
    • "MBE which allows for sex-biased admixture between migrants of Asian ancestry (possibly from Taiwan) with existing Melanesian populations with respect to Polynesian origins (Kayser et al. 2000, 2008; Wollstein et al. 2010; Mirabal et al. 2012). In addition, some studies offered a differing perspective: possible earlier migration(s) from the Asian mainland during the late-Pleistocene to early-Holocene period, which predates the Austronesian expansion, based on mtDNA (Hill et al. 2006, 2007) and Y-chromosomal (Karafet et al. 2010) analyses of island Southeast Asian populations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The population history of the indigenous populations in island Southeast Asia is generally accepted to have been shaped by two major migrations: the ancient "Out of Africa" migration ∼50,000 years before present (YBP) and the relatively recent "Out of Taiwan" expansion of Austronesian agriculturalists approximately 5,000 YBP. The Negritos are believed to have originated from the ancient migration, whereas the majority of island Southeast Asians are associated with the Austronesian expansion. We determined 86 mitochondrial DNA (mtDNA) complete genome sequences in four indigenous Malaysian populations, together with a reanalysis of published autosomal single-nucleotide polymorphism (SNP) data of Southeast Asians to test the plausibility and impact of those migration models. The three Austronesian groups (Bidayuh, Selatar, and Temuan) showed high frequencies of mtDNA haplogroups, which originated from the Asian mainland ∼30,000-10,000 YBP, but low frequencies of "Out of Taiwan" markers. Principal component analysis and phylogenetic analysis using autosomal SNP data indicate a dichotomy between continental and island Austronesian groups. We argue that both the mtDNA and autosomal data suggest an "Early Train" migration originating from Indochina or South China around the late-Pleistocene to early-Holocene period, which predates, but may not necessarily exclude, the Austronesian expansion.
    Molecular Biology and Evolution 06/2012; 29(11):3513-27. DOI:10.1093/molbev/mss169 · 9.11 Impact Factor
Show more