Development and evaluation of a real-time RT-PCR assay for Sindbis virus detection

Infection Biology Research Program, Research Programs Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Journal of virological methods (Impact Factor: 1.88). 11/2011; 179(1):185-8. DOI: 10.1016/j.jviromet.2011.10.021
Source: PubMed

ABSTRACT Sindbis virus (SINV) is an arthropod-borne alphavirus found widely in Eurasia, Africa and Oceania. Clinical SINV infection, characterized by rash and arthritis, is reported primarily in Northern Europe. The laboratory diagnosis of SINV infection is based currently on serology. A one-step TaqMan(®) real-time RT-PCR assay was developed for the detection of SINV and evaluated its clinical performance with acute-phase serum samples. The specificity and sensitivity of the real-time PCR assay were assessed using cell cultured Finnish SINV strains. The applicability of the assay for diagnostic use was evaluated using 58 serum samples from patients infected with SINV. The real-time RT-PCR assay was specific and sensitive for the detection of SINV in cell culture supernatants with a 95% detection limit of 9 genome copies/reaction determined by probit analysis. However, in the assay only 7/58 (12%) of serum samples were positive of which two were also positive by conventional nested PCR assay and none by virus isolation. This novel assay is specific and sensitive for detection of SINV and can be used for example for screening SINV in wildlife. However, molecular diagnostic techniques using serum samples seem to be of limited value for the diagnosis of human SINV infection due to the short and low viraemia of infection with SINV.

  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Sindbis virus (SINV), the prototype positive-sense RNA alphavirus, causes febrile arthritis and is present throughout Afro-Eurasia. Little is known of the epidemiology of Sindbis fever due to insufficient surveillance in most endemic countries. The epidemiological features of Sindbis fever in humans in South Africa are described here based on a retrospective study of suspected arbovirus cases submitted for laboratory investigation from 2006 to 2010. Cases were detected annually mostly during the late summer/early autumn months and an increase in cases was noted for 2010, coinciding with an outbreak of Rift Valley fever. Cases were reported most often from the central plateau of South Africa and involved mostly males. No severe or fatal cases were reported and cases were associated with febrile arthralgia as commonly reported for SINV infection. Further surveillance is required to reveal the true extent of the morbidity of Sindbis fever in South Africa.
    Epidemiology and Infection 04/2013; DOI:10.1017/S0950268813000964 · 2.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traditional tick taxonomy based on morphological characters is recently challenged by data generated from DNA analysis and several revisions in tick families have been proposed accordingly. Thus, names of some tick genera and their taxonomic positions have changed, species moved from one rank to another, while other names were invalidated. In this chapter, we update the genus Hyalomma species names as compiled from recent re-descriptions of species and tick reviews up to year 2011. Hyalomma species are known vectors of large numbers of parasites and pathogens transmitted to humans and livestock in different parts of the world making these ticks the economically most important ixodids.
    Arthropods as Vectors of Emerging Diseases, Edited by Mehlhorn, Heinz, 01/2012: pages 167-194; Springer Berlin Heidelberg.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mosquito-borne alphaviruses have the potential to cause large outbreaks throughout the world. Here we investigated the causative agent of an unexpected Sindbis virus (SINV) outbreak during August-September, 2013, in a previously nonendemic region of Sweden. Mosquitoes were collected using carbon dioxide-baited CDC traps at locations close to human cases. The mosquitoes were initially screened as large pools by SINV-specific quantitative RT-PCR, and the SINV-positive mosquitoes were species determined by single-nucleotide polymorphism (SNP) analysis, followed by sequencing the barcoding region of the cytochrome oxidase I gene. The proportion of the collected mosquitoes was determined by a metabarcoding strategy. By using novel strategies for PCR screening and genetic typing, a new SINV strain, Lövånger, was isolated from a pool of 1600 mosquitoes composed of Culex, Culiseta, and Aedes mosquitoes as determined by metabarcoding. The SINV-positive mosquito Culiseta morsitans was identified by SNP analysis and sequencing. After whole-genome sequencing and phylogenetic analysis, the SINV Lövånger isolate was shown to be most closely similar to recent Finnish SINV isolates. In conclusion, within a few weeks, we were able to detect and isolate a novel SINV strain and identify the mosquito vector during a sudden SINV outbreak.
    Vector borne and zoonotic diseases (Larchmont, N.Y.) 02/2015; 15(2):133-140. DOI:10.1089/vbz.2014.1717 · 2.53 Impact Factor