Article

Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. Clinical article

Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA.
Journal of neurosurgery. Spine (Impact Factor: 2.36). 11/2011; 16(2):107-13. DOI: 10.3171/2011.10.SPINE11199
Source: PubMed

ABSTRACT The primary goal of this study was to review the immediate postoperative neurological function in patients surgically treated for symptomatic cervical spine disease without intraoperative neurophysiological monitoring. The secondary goal was to assess the economic impact of intraoperative monitoring (IOM) in this patient population.
This study is a retrospective review of 720 consecutively treated patients who underwent cervical spine procedures. The patients were identified and the data were collected by individuals who were not involved in their care.
A total of 1534 cervical spine levels were treated in 720 patients using anterior, posterior, and combined (360°) approaches. Myelopathy was present preoperatively in 308 patients. There were 185 patients with increased signal intensity within the spinal cord on preoperative T2-weighted MR images, of whom 43 patients had no clinical evidence of myelopathy. Three patients (0.4%) exhibited a new neurological deficit postoperatively. Of these patients, 1 had a preoperative diagnosis of radiculopathy, while the other 2 were treated for myelopathy. The new postoperative deficits completely resolved in all 3 patients and did not require additional treatment. The Current Procedural Terminology (CPT) codes for IOM during cervical decompression include 95925 and 95926 for somatosensory evoked potential monitoring of the upper and lower extremities, respectively, as well as 95928 and 95929 for motor evoked potential monitoring of the upper and lower extremities. In addition to the charge for the baseline [monitoring] study, patients are charged hourly for ongoing electrophysiology testing and monitoring using the CPT code 95920. Based on these codes and assuming an average of 4 hours of monitoring time per surgical case, the savings realized in this group of patients was estimated to be $1,024,754.
With the continuing increase in health care costs, it is our responsibility as providers to minimize expenses when possible. This should be accomplished without compromising the quality of care to patients. This study demonstrates that decompression and reconstruction for symptomatic cervical spine disease without IOM may reduce the cost of treatment without adversely impacting patient safety.

2 Followers
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spine surgery carries an inherent risk of damage to critical neural structures. Intraoperative neurophysiological monitoring (IONM) is frequently used to improve the safety of spine surgery by providing real-time assessment of neural structures at risk. Evidence-based guidelines for safe and efficacious use of IONM are lacking and its use is largely driven by surgeon preference and medicolegal issues. Due to this lack of standardization, the preoperative sign-in serves as a critical opportunity for 3-way discussion between the neurosurgeon, anesthesiologist, and neuromonitoring team regarding the necessity for and goals of IONM in the ensuing case. This analysis contains a review of commonly used IONM modalities including somatosensory evoked potentials, motor evoked potentials, spontaneous or free-running electromyography, triggered electromyography, and combined multimodal IONM. For each modality the methodology, interpretation, and reported sensitivity and specificity for neurological injury are addressed. This is followed by a discussion of important IONM-related issues to include in the preoperative checklist, including anesthetic protocol, warning criteria for possible neurological injury, and consideration of what steps to take in response to a positive alarm. The authors conclude with a cost-effectiveness analysis of IONM, and offer recommendations for IONM use during various forms of spine surgery, including both complex spine and minimally invasive procedures, as well as lower-risk spinal operations.
    Neurosurgical FOCUS 11/2012; 33(5):E10. DOI:10.3171/2012.9.FOCUS12235 · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Object The use of intraoperative neurophysiological monitoring (IONM) in surgical decompression surgery for myelopathy may assist the surgeon in taking corrective measures to reduce or prevent permanent neurological deficits. We evaluated the efficacy of IONM in cervical and cervicothoracic spondylotic myelopathy (CSM) cases. Methods The authors retrospectively reviewed 140 cases involving patients who underwent surgery for CSM utilizing IONM during 2011 at the University of California, San Francisco. Data on preoperative clinical variables, intraoperative changes in transcranial motor evoked potentials (MEPs), and postoperative new neurological deficits were collected. Associations between categorical variables were analyzed with the Fisher exact test. Results Of the 140 patients, 16 (11%) had significant intraoperative decreases in MEPs. In 8 of these cases, the MEP signal did not return to baseline values by the end of the operation. There were 8 (6%) postoperative deficits, of which 6 were C-5 palsies and 2 were paraparesis. Six of the patients with postoperative deficits had demonstrated persistent MEP signal change on IONM. There was a significant association between persistent MEP changes and postoperative deficits (p < 0.001). The sensitivity of intraoperative MEP monitoring was 75%, the specificity 98%, the positive predictive value 75%, and the negative predictive value 98%. Due to higher rates of false negatives, the sensitivity decreased to 60% in the subgroup of patients with vascular disease comorbidity. The sensitivity increased to 100% in elderly patients and in patients with preoperative motor deficits. The sensitivity and positive predictive value of deltoid and biceps MEP changes in predicting C-5 palsy were 67% and 67%, respectively. Conclusions The authors found a correlation between decreased intraoperative MEPs and postoperative new neurological deficits in patients with CSM. Sensitivity varies based on patient comorbidities, age, and preoperative neurological function. Monitoring of MEPs is a useful adjunct for CSM cases, and the authors have developed a checklist to standardize their responses to intraoperative MEP changes.
    Neurosurgical FOCUS 07/2013; 35(1):E7. DOI:10.3171/2013.4.FOCUS13121 · 2.14 Impact Factor
  • Journal of neurosurgery. Spine 08/2013; DOI:10.3171/2012.11.SPINE12380 · 2.36 Impact Factor
Show more