Article

Rosacea as a disease of cathelicidins and skin innate immunity.

Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
Journal of Investigative Dermatology Symposium Proceedings (Impact Factor: 3.73). 12/2011; 15(1):12-5. DOI: 10.1038/jidsymp.2011.4
Source: PubMed

ABSTRACT Rosacea is a common and chronic inflammatory skin disease most frequently seen in groups of genetically related individuals. Although the symptoms of rosacea are heterogeneous, they are all related by the presence of characteristic facial or ocular inflammation involving both the vascular and tissue stroma. Until recently, the pathophysiology of this disease was limited to descriptions of a wide variety of factors that exacerbate or improve disease. Recent molecular studies show a common link between the triggers of rosacea and the cellular response, and these observations suggest that an altered innate immune response is involved in disease pathogenesis. Understanding rosacea as a disorder of innate immunity explains the benefits of current treatments and suggests new therapeutic strategies for alleviating this disease.

1 Bookmark
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cathelicidins are phylogenetically ancient, pleiotropic host defense peptides-also called antimicrobial peptides (AMPs)-expressed in numerous life forms for innate immunity. Since even the jawless hagfish expresses cathelicidins, these genetically encoded host defense peptides are at least 400 million years old. More recently, cathelicidins with varying antipathogenic activities and cytotoxicities were discovered in the venoms of poisonous snakes; for these creatures, cathelicidins may also serve as weapons against prey and predators, as well as for innate immunity. We report herein the expression of orthologous cathelicidin genes in the venoms of four different South American pit vipers (Bothrops atrox, Bothrops lutzi, Crotalus durissus terrificus, and Lachesis muta rhombeata)-distant relatives of Asian cobras and kraits, previously shown to express cathelicidins-and an elapid, Pseudonaja textilis. We identified six novel, genetically encoded peptides: four from pit vipers, collectively named vipericidins, and two from the elapid. These new venom-derived cathelicidins exhibited potent killing activity against a number of bacterial strains (S. pyogenes, A. baumannii, E. faecalis, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa), mostly with relatively less potent hemolysis, indicating their possible usefulness as lead structures for the development of new anti-infective agents. It is worth noting that these South American snake venom peptides are comparable in cytotoxicity (e.g., hemolysis) to human cathelicidin LL-37, and much lower than other membrane-active peptides such as mastoparan 7 and melittin from bee venom. Overall, the excellent bactericidal profile of vipericidins suggests they are a promising template for the development of broad-spectrum peptide antibiotics.
    Amino Acids 08/2014; · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Demodex mites colonized the hair follicles and sebaceous glands of mammals millions of years ago and have remained relatively unchanged in this protected ecologic niche since then. The host immune system detects and tolerates their presence. Toll-like receptor-2 of keratinocytes has been demonstrated to recognize mite chitin and to elicit an innate immune response. The subsequent acquired immune response is poorly understood at present, but there is experimental and clinical evidence that this is the main mechanism in the control of mite proliferation. A transgenic mouse model (STAT(-/-) /CD28(-/-) ) has demonstrated that the immune response is complex, probably involving both cellular and humoral mechanisms and requiring the role of co-stimulatory molecules (CD28). It is known that a genetic predisposition for developing canine juvenile generalized demodicosis exists; however, the primary defect leading to the disease remains unknown. Once the mite proliferation is advanced, dogs show a phenotype that is similar to the T-cell exhaustion characterized by low interleukin-2 production and high interleukin-10 and transforming growth factor-β production by lymphocytes, as described in other viral and parasitic diseases. Acaricidal treatment (macrocyclic lactones) decreases the antigenic load and reverses T-cell exhaustion, leading to a clinical cure. Although in recent years there have been significant advances in the management and understanding of this important and complex canine disease, more research in areas such as the aetiology of the genetic predisposition and the immune control of the mite populations is clearly needed.
    Veterinary Dermatology 06/2014; · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings of increased cathelicidin protein and its proteolytic fragments in rosacea suggest a pathogenic role for cathelicidin in this disease. The relationship between cathelicidin and protease-activated receptor 2 (PAR-2) is therefore of interest, as PAR-2, expressed principally in keratinocytes, regulates pro-inflammatory cytokine expression in the skin. The purpose of this study was to determine the relationship between expression of PAR-2 and cathelicidin in rosacea and to test the effect of direct PAR-2 activation on cathelicidin expression in keratinocytes.
    Yonsei Medical Journal 11/2014; 55(6):1648-55. · 1.26 Impact Factor

Preview

Download
1 Download
Available from