Article

Melanopsin-Positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function

Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 11/2011; 31(45):16094-101. DOI: 10.1523/JNEUROSCI.4132-11.2011
Source: PubMed

ABSTRACT Melanopsin imparts an intrinsic photosensitivity to a subclass of retinal ganglion cells (ipRGCs). Generally thought of as irradiance detectors, ipRGCs target numerous brain regions involved in non-image-forming vision. ipRGCs integrate their intrinsic, melanopsin-mediated light information with rod/cone signals relayed via synaptic connections to influence light-dependent behaviors. Early observations indicated diversity among these cells and recently several specific subtypes have been identified. These subtypes differ in morphological and physiological form, controlling separate functions that range from biological rhythm via circadian photoentrainment, to protective behavioral responses including pupil constriction and light avoidance, and even image-forming vision. In this Mini-Symposium review, we will discuss some recent findings that highlight the diversity in both form and function of these recently discovered atypical photoreceptors.

2 Followers
 · 
157 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When we look at the world-or a graphical depiction of the world-we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance-based on a boarder theoretical framework called gamut relativity-that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.
    PLoS ONE 11/2014; 9(11):e113159. DOI:10.1371/journal.pone.0113159 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seasonal variation in immune function putatively maximizes survival and reproductive success. Day length (photoperiod) is the most potent signal for time of year. Animals typically organize breeding, growth, and behavior to adapt to spatial and temporal niches. Outside the tropics individuals monitor photoperiod to support adaptations favoring survival and reproductive success. Changes in day length allow anticipation of seasonal changes in temperature and food availability that are critical for reproductive success. Immune function is typically bolstered during winter, whereas reproduction and growth are favored during summer. We provide an overview of how photoperiod influences neuronal function and melatonin secretion, how melatonin acts directly and indirectly to govern seasonal changes in immune function, and the manner by which other neuroendocrine effectors such as glucocorticoids, prolactin, thyroid, and sex steroid hormones modulate seasonal variations in immune function. Potential future research avenues include commensal gut microbiota and light pollution influences on photoperiodic responses. Copyright © 2014. Published by Elsevier Inc.
    Frontiers in Neuroendocrinology 10/2014; DOI:10.1016/j.yfrne.2014.10.001 · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber's hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
    Neuroscience 11/2014; 284C:845-853. DOI:10.1016/j.neuroscience.2014.11.002 · 3.33 Impact Factor

Full-text (2 Sources)

Download
55 Downloads
Available from
May 20, 2014