Article

Phase I clinical, pharmacokinetic, and pharmacodynamic study of KOS-862 (Epothilone D) in patients with advanced solid tumors and lymphoma.

Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA, .
Investigational New Drugs (Impact Factor: 3.5). 11/2011; DOI: 10.1007/s10637-011-9765-7
Source: PubMed

ABSTRACT Purpose To determine the maximum tolerated dose and safety of the epothilone, KOS-862, in patients with advanced solid tumors or lymphoma. Patients and Methods Patients were treated weekly for 3 out of 4 weeks (Schedule A) or 2 out of 3 weeks (Schedule B) with KOS-862 (16-120 mg/m(2)). Pharmacokinetic (PK) sampling was performed during cycles 1 and 2; pharmacodynamic (PD) assessment for microtubule bundle formation (MTBF) was performed after the 1st dose, only at or above 100 mg/m(2). Results Thirty-two patients were enrolled, and twenty-nine completed ≥1 cycle of therapy. Dose limiting toxicity [DLT] was observed at 120 mg/m(2). PK data were linear from 16 to 100 mg/m(2), with proportional increases in mean C(max) and AUC(tot) as a function of dose. Full PK analysis (mean ± SD) at 100 mg/m(2) revealed the following: half-life (t (½)) = 9.1 ± 2.2 h; volume of distribution (V(z)) = 119 ± 41 L/m(2); clearance (CL) = 9.3 ± 3.2 L/h/m(2). MTBF (n = 9) was seen in 40% of PBMCs within 1 h and in 15% of PBMC at 24-hours post infusion at 100 mg/m(2). Tumor shrinkage (n = 2, lymphoma), stable disease >3 months (n = 5, renal, prostate, oropharynx, cholangiocarcinoma, and Hodgkin lymphoma), and tumor marker reductions (n = 1, colorectal cancer/CEA) were observed. Conclusion KOS-862 was well tolerated with manageable toxicity, favorable PK profile, and the suggestion of clinical activity. The maximum tolerated dose was determined to be 100 mg/m(2) weekly 3-on/1-off. MTBF can be demonstrated in PBMCs of patients exposed to KOS-862.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epothilones are naturally occurring, cytotoxic macrolides that function through a paclitaxel (Taxol)-like mechanism. Although structurally dissimilar, both classes of molecules lead to the arrest of cell division and eventual cell death by stabilizing cellular microtubule assemblies. The epothilones differ in their ability to retain activity against multidrug-resistant (MDR) cell lines and tumors where paclitaxel fails. In the current account, we focus on the relationship between epothilone and paclitaxel in the context of tumors with multiple drug resistance. The epothilone analogue Z-12,13-desoxyepothilone B (dEpoB) is >35,000-fold more potent than paclitaxel in inhibiting cell growth in the MDR DC-3F/ADX cell line. Various formulations, routes, and schedules of i.v. administration of dEpoB have been tested in nude mice. Slow infusion with a Cremophor-ethanol vehicle proved to be the most beneficial in increasing efficacy and decreasing toxicity. Although dEpoB performed similarly to paclitaxel in sensitive tumors xenografts (MX-1 human mammary and HT-29 colon tumor), its effects were clearly superior against MDR tumors. When dEpoB was administered to nude mice bearing our MDR human lymphoblastic T cell leukemia (CCRF-CEM/paclitaxel), dEpoB demonstrated a full curative effect. For human mammary adenocarcinoma MCF-7/Adr cells refractory to paclitaxel, dEpoB reduced the established tumors, markedly suppressed tumor growth, and surpassed other commonly used chemotherapy drugs such as adriamycin, vinblastine, and etoposide in beneficial effects.
    Proceedings of the National Academy of Sciences 12/1998; · 9.74 Impact Factor
  • Biochimica et Biophysica Acta 06/2000; 1470(3):M79-91. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: First-in-man study of KOS-1584, a second generation epothilone. Patients with advanced solid malignancies received KOS-1584 every 3 weeks until disease progression. Using a modified Fibonacci dose escalation scheme, one patient was enrolled at each dose level until the first instance of grade 2 toxicity. Thereafter, a standard 3 + 3 design was utilized. Sixty-six patients in 14 cohorts were dosed from 0.8 to 48 mg/m(2). Diarrhea, arthralgias, and encephalopathy were dose-limiting toxicities (DLTs) at doses ≥36 mg/m(2). At the recommended phase II dose (RP2D), the most common adverse effects were peripheral neuropathy (low grade), fatigue, arthralgias/myalgias, and diarrhea (31, 6%). The incidence of neutropenia was low. The overall clearance, volume of distribution, and half-life of KOS-1584 were 11 ± 6.17 L/h/m(2), 327 ± 161 L/m(2), and 21.9 ± 8.75 h, respectively. The half-life for the seco-metabolite (KOS-1891) was 29.6 ± 13.8 h. KOS-1584 exhibited linear pharmacokinetics. A dose-dependent increase in microtubulin bundle formation was observed at doses ≥27 mg/m(2). Two patients achieved partial responses and 24 patients had stable disease (SD). The RP2D of KOS-1584 is 36 mg/m(2). The lack of severe neurologic toxicity, diarrhea, neutropenia, or hypersensitivity reactions; favorable pharmacokinetic profile; and early evidence of activity support further evaluation.
    Cancer Chemotherapy and Pharmacology 08/2011; 69(2):523-31. · 2.80 Impact Factor