Challenges in Estimating Insecticide Selection Pressures from Mosquito Field Data

Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
PLoS Neglected Tropical Diseases (Impact Factor: 4.49). 11/2011; 5(11):e1387. DOI: 10.1371/journal.pntd.0001387
Source: PubMed

ABSTRACT Insecticide resistance has the potential to compromise the enormous effort put into the control of dengue and malaria vector populations. It is therefore important to quantify the amount of selection acting on resistance alleles, their contributions to fitness in heterozygotes (dominance) and their initial frequencies, as a means to predict the rate of spread of resistance in natural populations. We investigate practical problems of obtaining such estimates, with particular emphasis on Mexican populations of the dengue vector Aedes aegypti. Selection and dominance coefficients can be estimated by fitting genetic models to field data using maximum likelihood (ML) methodology. This methodology, although widely used, makes many assumptions so we investigated how well such models perform when data are sparse or when spatial and temporal heterogeneity occur. As expected, ML methodologies reliably estimated selection and dominance coefficients under idealised conditions but it was difficult to recover the true values when datasets were sparse during the time that resistance alleles increased in frequency, or when spatial and temporal heterogeneity occurred. We analysed published data on pyrethroid resistance in Mexico that consists of the frequency of a Ile1,016 mutation. The estimates for selection coefficient and initial allele frequency on the field dataset were in the expected range, dominance coefficient points to incomplete dominance as observed in the laboratory, although these estimates are accompanied by strong caveats about possible impact of spatial and temporal heterogeneity in selection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mosquito control based on chemical insecticides is considered as an important element in the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of pyrethroid resistance in important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. To date, the mechanisms of pyrethroid resistance are still unclear. Recent advances in proteomic techniques can facilitate to identify pyrethroid resistance-associated proteins at a large-scale for improving our understanding of resistance mechanisms, and more importantly, for seeking some genetic markers used for monitoring and predicting the development of resistance. We performed a quantitative proteomic analysis between a deltamethrin-susceptible strain and a deltamethrin-resistant strain of laboratory population of Culex pipiens pallens using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Gene Ontology (GO) analysis was used to find the relative processes that these differentially expressed proteins were involved in. One differentially expressed protein was chosen to confirm by Western blot in the laboratory and field populations of Cx. pipiens pallens. We identified 30 differentially expressed proteins assigned into 10 different categories, including oxidoreductase activity, transporter activity, catalytic activity, structural constituent of cuticle and hypothetical proteins. GO analysis revealed that 25 proteins were sub-categorized into 35 hierarchically-structured GO classifications. Western blot results showed that CYP6AA9 as one of the up-regulated proteins was confirmed to be overexpressed in the deltamethrin-resistant strains compared with the deltamethrin-susceptible strains both in the laboratory and field populations. This is the first study to use modern proteomic tools for identifying pyrethroid resistance-related proteins in Cx. pipiens. The present study brought to light many proteins that were not previously thought to be associated with pyrethroid resistance, which further expands our understanding of pyrethroid resistance mechanisms. CYP6AA9 was overexpressed in the deltamethrin-resistant strains, indicating that CYP6AA9 may be involved in pyrethroid resistance and may be used as a potential genetic marker to monitor and predict the pyrethroid resistance level of field populations.
    Parasites & Vectors 12/2015; 8(1). DOI:10.1186/s13071-015-0709-5 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seven F1 strains of Aedes aegypti (L.) were evaluated by bottle bioassay for resistance to the pyrethroids d-phenothrin, permethrin, deltamethrin, lambda-cyalothrin, bifenthrin, cypermethrin, alpha-cypermethrin, and z-cypermethrin. The New Orleans strain was used as a susceptible control. Mortality rates after a 1 h exposure and after a 24 h recovery period were determined. The resistance ratio between the 50% knockdown values (RR(KC50)) of the F1 and New Orleans strains indicated high levels of knockdown resistance. The RR(KC50) with alpha-cypermethrin varied from 10 to 100 among strains indicating high levels of knockdown resistance. Most of the strains had moderate resistance to d-phenothrin. Significant but much lower levels of resistance were detected for lambda-cyalothrin, permethrin, and cypermethrin. For zeta-cypermethrin and bifenthrin, only one strain exhibited resistance with RR(KC50) values of 10- and 21-fold, respectively. None of the strains showed RR(KC50) >10 with deltamethrin, and moderate resistance was seen in three strains, while the rest were susceptible. Mosquitoes from all strains exhibited some recovery from all pyrethroids except d-phenothrin. Regression analysis was used to analyze the relationship between RR(LC50) and RR(KC50). Both were highly correlated (R2 = 0.84-0.97) so that the slope could be used to determine how much additional pyrethroid was needed to ensure lethality. Slopes ranged from 0.875 for d-phenothrin (RR(LC50) approximately equal to RR(KC50)) to 8.67 for lambda-cyalothrin (-8.5-fold more insecticide needed to kill). Both RR(LC50) and RR(KC50) values were highly correlated for all pyrethroids except bifenthrin indicating strong cross-resistance. Bifenthrin appears to be an alternative pyrethroid without strong cross-resistance that could be used as an alternative to the current widespread use of permethrin in Mexico.
    Journal of Economic Entomology 04/2013; 106(2):959-69. DOI:10.1603/EC12284 · 1.61 Impact Factor
  • Source
    Proceedings of the National Academy of Sciences 01/2015; DOI:10.1073/pnas.1418892112 · 9.81 Impact Factor

Full-text (3 Sources)

Available from
Jul 10, 2014