Ipsilateral Printing in Children's Mirror-Writing: A Cause of Specific Learning Disabilities?

Canadian Journal of Experimental Psychology (Impact Factor: 1.02). 11/2011; 66(3):172-80. DOI: 10.1037/a0025873
Source: PubMed


Previous research has demonstrated that young children produce mirror-image letter-reversals when printing their names in a leftward direction from the midline or right margin of their writing paper. This ability is postulated to be an epiphenomenon of a symmetric, proximal (arm) stage of motor development that ontogenetically precedes lateralization of fine-motor distal (finger) control-a stage in which each arm can be controlled by either side of the brain. From this view, canonical writing in right hemi-space is contralaterally mediated by the left hemisphere and mirror-writing in left hemi-space is ipsilaterally mediated by the right hemisphere. However, evidence of right hemisphere canonical letter processing in dyslexia suggests that this is not always the case. Concordantly, an early study corrected reversals by having children print these errors canonically in left hemi-space and then rightward across the midline into right hemi-space. To further understand this behaviour, the present study investigated mirror-writing in three schools (Public, Montessori, and Waldorf) each differing in how writing is introduced. It was hypothesised that there would be no school-differences in mirror-writing if printing had been learned before school-entry and that some children would produce reversals in right hemi-space that were canonically written in left-hemi-space (inverse reversals)-the opposite of the normal pattern. The results showed that 39% of the children demonstrated these inverse reversals. It is discussed how this unexpectedly high incidence may be foundational in the development of the phonologically proficient and deficient subtypes of dyslexia, spelling-dysgraphia, and the left-hand inverted writing posture.

7 Reads

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.