Article

The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata.

Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA.
Nucleic Acids Research (Impact Factor: 8.81). 11/2011; 40(Database issue):D667-74. DOI: 10.1093/nar/gkr945
Source: PubMed

ABSTRACT The Candida Genome Database (CGD, http://www.candidagenome.org/) is an internet-based resource that provides centralized access to genomic sequence data and manually curated functional information about genes and proteins of the fungal pathogen Candida albicans and other Candida species. As the scope of Candida research, and the number of sequenced strains and related species, has grown in recent years, the need for expanded genomic resources has also grown. To answer this need, CGD has expanded beyond storing data solely for C. albicans, now integrating data from multiple species. Herein we describe the incorporation of this multispecies information, which includes curated gene information and the reference sequence for C. glabrata, as well as orthology relationships that interconnect Locus Summary pages, allowing easy navigation between genes of C. albicans and C. glabrata. These orthology relationships are also used to predict GO annotations of their products. We have also added protein information pages that display domains, structural information and physicochemical properties; bibliographic pages highlighting important topic areas in Candida biology; and a laboratory strain lineage page that describes the lineage of commonly used laboratory strains. All of these data are freely available at http://www.candidagenome.org/. We welcome feedback from the research community at candida-curator@lists.stanford.edu.

0 Bookmarks
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manipulating the apoptotic response of Candida albicans may help in the control of this opportunistic pathogen. The metacaspase Mca1p has been described as a key protease for apoptosis in C. albicans but little is known about its cleavage specificity and substrates. We therefore initiated a series of studies to describe its function. We used a strain disrupted for the MCA1 gene and compared its proteome to that of a wild-type isogenic strain, in the presence and absence of a known inducer of apoptosis, the quorum-sensing molecule farnesol. Label-free and TMT labeling quantitative proteomic analyses showed that both mca1 disruption and farnesol treatment significantly affected the proteome of the cells. The combination of both conditions led to an unexpected biological response: the strong overexpression of proteins implicated in the general stress. We studied sites cleaved by Mca1p using native peptidomic techniques, and a bottom-up approach involving GluC endoprotease: there appeared to be a K/R substrate specificity in P1 and a D/E specificity in P2. We also found 80 potential substrates of Mca1p, implicated in protein folding, protein aggregate resolubilization, glycolysis and a number of mitochondrial functions. These various results indicate that Mca1p is involved in a limited and specific proteolysis program triggered by apoptosis. One of the main functions of Mca1p appears to be the degradation of several major Heat Shock Proteins, thereby contributing to weakening cellular defenses and amplifying the cell death process. Finally, Mca1p appears to contribute significantly to the control of mitochondria biogenesis and degradation. Consequently, Mca1p may be a link between the extrinsic and the intrinsic programmed cell death pathways in C. albicans.
    Molecular & cellular proteomics : MCP. 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis.
    PLoS Pathogens 09/2014; 10(9):e1004365. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components.
    mBio 01/2014; 5(4). · 6.88 Impact Factor

Full-text (2 Sources)

Download
30 Downloads
Available from
May 31, 2014