Article

How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension

Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 11/2011; 302(5):H1031-49. DOI: 10.1152/ajpheart.00899.2011
Source: PubMed

ABSTRACT Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.

3 Followers
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The work of deWardener and colleagues stimulated longstanding interest in natriuretic hormones (NHs). In addition to the atrial peptides (APs), the circulation contains unidentified physiologically relevant NHs. One NH is controlled by the central nervous system (CNS) and likely secreted by the pituitary. Its circulating activity is modulated by salt intake and the prevailing sodium concentration of the blood and intracerebroventricular fluid, and contributes to postprandial and dehydration natriuresis. The other NH, mobilized by atrial stretch, promotes natriuresis by increasing the production of intrarenal dopamine and/or nitric oxide (NO). Both NHs have short (<35 min) circulating half lives, depress renotubular sodium transport, and neither requires the renal nerves. The search for NHs led to endogenous cardiotonic steroids (CTS) including ouabain-, digoxin-, and bufadienolide-like materials. These CTS, given acutely in high nanomole to micromole amounts into the general or renal circulations, inhibit sodium pumps and are natriuretic. Among these CTS, only bufalin is cleared sufficiently rapidly to qualify for an NH-like role. Ouabain-like CTS are cleared slowly, and when given chronically in low daily nanomole amounts, promote sodium retention, augment arterial myogenic tone, reduce renal blood flow and glomerular filtration, suppress NO in the renal vasa recta, and increase sympathetic nerve activity and blood pressure. Moreover, lowering total body sodium raises circulating endogenous ouabain. Thus, ouabain-like CTS have physiological actions that, like aldosterone, support renal sodium retention and blood pressure. In conclusion, the mammalian circulation contains two non-AP NHs. Identification of the CNS NH should be a priority.
    Frontiers in Endocrinology 12/2014; 5:199. DOI:10.3389/fendo.2014.00199
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present manuscript focuses on a putative natriuretic hormone. It includes the history of a long-term search for the pure molecule, ranging from partial purification to synthesis. It includes a description of seven different bioassay systems used, a resume of the sequential steps in purification, and a summary of a series of experimental protocols employed in the effort to define the biologic properties of the inhibitor of sodium (Na) transport. Two closely related molecules were purified and synthesized. Both are xanthurenic acid derivatives (xanthurenic acid 8-O-β-D-glucoside and xanthurenic acid 8-O-sulfate). It is concluded that one or both of these two low molecular weight compounds (MW: 368 and 284) meet many of the criteria for the final modulator of Na excretion.
    Frontiers in Endocrinology 12/2014; 5:212. DOI:10.3389/fendo.2014.00212
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The functions of smooth muscle sodium calcium exchanger (NCX) in the vasculature are controversial and poorly understood. To determine the possible roles of NCX in the vascular phenotype and function, we developed a novel mouse model (SM-NCX1 KO) in which the smooth muscle-specific NCX type-1 (NCX1) was conditionally knocked out using tamoxifen-inducible Cre-loxP recombination technique. SM-NCX1 KO mice exhibit significantly lower blood pressure and attenuated angiotensin II (Ang II)-salt-induced hypertension (measured by radio telemetry and intra-arterial catheterization). Isolated, pressurized mesenteric small resistance arteries from SM-NCX1 KO mice, compared to control arteries, were characterized by the following: (1) ~90% reduced NCX1 protein expression; (2) impaired functional responses to (i) acute NCX inhibition by SEA0400 or SN-6, (ii) NCX activation by low [Na+]o, and (iii) Na+ pump inhibition by ouabain; (3) attenuated myogenic reactivity; and (4) attenuated vasoconstrictor response to phenylephrine but not Ang II. These results provided direct evidence that arterial NCX1 normally mediates net Ca2+ influx that helps maintain basal vascular tone in small resistance arteries and blood pressure under physiological conditions. Importantly, NCX1 contributes to blood pressure elevation in Ang II-salt hypertension, possibly by regulating α-adrenergic receptor activation.
    01/2015; 3(1). DOI:10.14814/phy2.12273