Article

An iterative self-refining and self-evaluating approach for protein model quality estimation.

Department of Computer Science, University of Missouri, Columbia, MO 65211, USA.
Protein Science (Impact Factor: 2.74). 11/2011; 21(1):142-51. DOI: 10.1002/pro.764
Source: PubMed

ABSTRACT Evaluating or predicting the quality of protein models (i.e., predicted protein tertiary structures) without knowing their native structures is important for selecting and appropriately using protein models. We describe an iterative approach that improves the performances of protein Model Quality Assurance Programs (MQAPs). Given the initial quality scores of a list of models assigned by a MQAP, the method iteratively refines the scores until the ranking of the models does not change. We applied the method to the model quality assessment data generated by 30 MQAPs during the Eighth Critical Assessment of Techniques for Protein Structure Prediction. To various degrees, our method increased the average correlation between predicted and real quality scores of 25 out of 30 MQAPs and reduced the average loss (i.e., the difference between the top ranked model and the best model) for 28 MQAPs. Particularly, for MQAPs with low average correlations (<0.4), the correlation can be increased by several times. Similar experiments conducted on the CASP9 MQAPs also demonstrated the effectiveness of the method. Our method is a hybrid method that combines the original method of a MQAP and the pair-wise comparison clustering method. It can achieve a high accuracy similar to a full pair-wise clustering method, but with much less computation time when evaluating hundreds of models. Furthermore, without knowing native structures, the iterative refining method can evaluate the performance of a MQAP by analyzing its model quality predictions.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As genome sequencing is becoming routine in biomedical research, the total number of protein sequences is increasing exponentially, recently reaching over 108 million. However, only a tiny portion of these proteins (i.e. ~75,000 or < 0.07%) have solved tertiary structures determined by experimental techniques. The gap between protein sequence and structure continues to enlarge rapidly as the throughput of genome sequencing techniques is much higher than that of protein structure determination techniques. Computational software tools for predicting protein structure and structural features from protein sequences are crucial to make use of this vast repository of protein resources. To meet the need, we have developed a comprehensive MULTICOM toolbox consisting of a set of protein structure and structural feature prediction tools. These tools include secondary structure prediction, solvent accessibility prediction, disorder region prediction, domain boundary prediction, contact map prediction, disulfide bond prediction, beta-sheet topology prediction, fold recognition, multiple template combination and alignment, template-based tertiary structure modeling, protein model quality assessment, and mutation stability prediction. These tools have been rigorously tested by many users in the last several years and/or during the last three rounds of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7-9) from 2006 to 2010, achieving state-of-the-art or near performance. In order to facilitate bioinformatics research and technological development in the field, we have made the MULTICOM toolbox freely available as web services and/or software packages for academic use and scientific research. It is available at http://sysbio.rnet.missouri.edu/multicom_toolbox/.
    BMC Bioinformatics 04/2012; 13:65. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Employing methods to assess the quality of modeled protein structures is now standard practice in bioinformatics. In a broad sense, the techniques can be divided into methods relying on consensus prediction on the one hand, and single-model methods on the other. Consensus methods frequently perform very well when there is a clear consensus, but this is not always the case. In particular, they frequently fail in selecting the best possible model in the hard cases (lacking consensus) or in the easy cases where models are very similar. In contrast, single-model methods do not suffer from these drawbacks and could potentially be applied on any protein of interest to assess quality or as a scoring function for sampling-based refinement. RESULTS: Here, we present a new single-model method, ProQ2, based on ideas from its predecessor, ProQ. ProQ2 is a model quality assessment algorithm that uses support vector machines to predict local as well as global quality of protein models. Improved performance is obtained by combining previously used features with updated structural and predicted features. The most important contribution can be attributed the use of profile weighting of the residue specific features and the use features averaged over the whole model even tough the prediction is still local. CONCLUSIONS: ProQ2 is significantly better than its predecessors at detecting high quality models, improving the sum of Z-scores for the selected first-ranked models by 20% and 32% compared to the second-best single-model method in CASP8 and CASP9, respectively. The absolute quality assessment of the models at both local and global level is also improved. The Pearson's correlation between the correct and local predicted score is improved from 0.59 to 0.70 on CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT_TS from 0.75 to 0.80 and from 0.77 to 0.80 again compared to the second-best single methods in CASP8.
    BMC Bioinformatics 09/2012; 13(1):224. · 3.02 Impact Factor

Full-text

View
35 Downloads
Available from
May 20, 2014