Sustained axon regeneration induced by co-deletion of PTEN and SOCS3

F.M. Kirby Neurobiology Center, Children's Hospital, Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
Nature (Impact Factor: 42.35). 11/2011; 480(7377):372-5. DOI: 10.1038/nature10594
Source: PubMed

ABSTRACT A formidable challenge in neural repair in the adult central nervous system (CNS) is the long distances that regenerating axons often need to travel in order to reconnect with their targets. Thus, a sustained capacity for axon regeneration is critical for achieving functional restoration. Although deletion of either phosphatase and tensin homologue (PTEN), a negative regulator of mammalian target of rapamycin (mTOR), or suppressor of cytokine signalling 3 (SOCS3), a negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, in adult retinal ganglion cells (RGCs) individually promoted significant optic nerve regeneration, such regrowth tapered off around 2 weeks after the crush injury. Here we show that, remarkably, simultaneous deletion of both PTEN and SOCS3 enables robust and sustained axon regeneration. We further show that PTEN and SOCS3 regulate two independent pathways that act synergistically to promote enhanced axon regeneration. Gene expression analyses suggest that double deletion not only results in the induction of many growth-related genes, but also allows RGCs to maintain the expression of a repertoire of genes at the physiological level after injury. Our results reveal concurrent activation of mTOR and STAT3 pathways as key for sustaining long-distance axon regeneration in adult CNS, a crucial step towards functional recovery.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurons of the central nervous system (CNS) form a magnificent network destined to control bodily functions and human behavior for a lifetime. During development of the CNS, neurons extend axons that establish connections to other neurons. Axon growth is guided by extrinsic cues and guidance molecules. In addition to environmental signals, intrinsic programs including transcription and the ubiquitin proteasome system (UPS) have been implicated in axon growth regulation. Over the past few years it has become evident that the E3 ubiquitin ligase Cdh1-APC together with its associated pathway plays a central role in axon growth suppression. By elucidating the intricate interplay of extrinsic and intrinsic mechanisms, we can enhance our understanding of why axonal regeneration in the CNS fails and obtain further insight into how to stimulate successful regeneration after injury.
    Translational Neuroscience 09/2013; 4(3). DOI:10.2478/s13380-013-0125-2 · 0.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease (HD) is caused by a polyglutamine tract expansion in huntingtin (HTT). Despite HTTs ubiquitous expression, there is early and robust vulnerability in striatum, the cause of which is poorly understood. Here, we provide evidence that impaired striatal mTORC1 activity underlies varied metabolic and degenerative phenotypes in HD brain and show that introducing the constitutively active form of the mTORC1 regulator, Rheb, into HD mouse brain, alleviates mitochondrial dysfunction, aberrant cholesterol homeostasis, striatal atrophy, impaired dopamine signaling, and increases autophagy. We also find that the expression of Rhes, a striatum-enriched mTOR activator, is reduced in HD patient and mouse brain and that exogenous addition of Rhes alleviates motor deficits and improves brain pathology in HD mice. Our combined work indicates that impaired Rhes/mTORC1 activity in HD brain may underlie the notable striatal susceptibility and thus presents a promising therapeutic target for HD therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 12/2014; 85(2). DOI:10.1016/j.neuron.2014.12.019 · 15.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

Full-text (2 Sources)

Available from
May 26, 2014