Article

The apoptotic effects of the flavonoid N101-2 in human cervical cancer cells.

Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea.
Toxicology in Vitro (Impact Factor: 3.21). 10/2011; 26(1):67-73. DOI: 10.1016/j.tiv.2011.10.012
Source: PubMed

ABSTRACT This study evaluated the anti-cancer effects of a naringenin derivative in human cervical cancer cells. In this study, a synthesized naringenin derivative, diethyl 5,7,4'-trihydroxy flavanone N-phenyl hydrazone (N101-2), inhibited cervical cancer cell growth, whereas naringenin itself exhibited no anti-cancer activity. N101-2 treatment inhibited cancer cell viability in a dose- and time-dependent manner through cell cycle arrest at sub-G1 phase, accompanied by an increase in apoptotic cell death. Expression of cyclins and ppRB was down-regulated, whereas that of CDK inhibitors and p53 increased upon N101-2 treatment. Meanwhile, we detected processing of caspases-8, -9, and -3, cleavage of PARP, as well as Bax up-regulation, which indicates activation of mitochondria-emanated intrinsic apoptosis signaling. Treatment with caspase-8 and -3 inhibitors also recovered cell cycling, and Fas/FasL expression increased in N101-2-treated cervical cancer cells, suggesting that Fas-mediated extrinsic apoptosis signaling was also activated. The tumor suppressor PTEN and its upstream regulator PPARγ were up-regulated with coincident inhibition of PI3K and phospho-Akt after N101-2 treatment. Taken together, we could conclude that N101-2 induces apoptosis by arresting the cell cycle at sub-G1 phase, activating mitochondria-emanated intrinsic and Fas-mediated extrinsic signaling pathways, and inhibiting the PI3K/AKT pathway in CaSki and SiHa human cervical cancer cells.

0 Followers
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is a public health issue in developing countries. Although the Pap smear and colposcopy remain the major strategies for detection, most cases are diagnosed in the late stages. Therefore, a major concern has been to develop early diagnostic approaches and more effective treatments. Molecular pathways that participate in cervical malignant transformation have emerged as promising directed therapeutic targets. In this review, we explore some of the major pathways implicated in cervical cancer development, including RAF/MEK/ERK, phosphatidylinositol-3 kinase (PI3K/AKT), Wnt/b-catenin, apoptosis and coupled membrane receptor signaling. We focus on the role of these pathways in cervical carcinogenesis, their alterations and the consequences of these abnormalities. In addition, the most recent preclinical and clinical data on the rationally designed target-based agents that are currently being tested against elements of these pathways are reviewed. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.
    Archives of Medical Research 11/2014; 45(7). DOI:10.1016/j.arcmed.2014.10.008 · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is the most common gynecologic malignancy worldwide and development of new therapeutic strategies and anticancer agents is an urgent priority. Plants have remained an important source in the search for novel cytotoxic compounds and several polyphenolic flavonoids possess antitumor properties. In this review article, data about potential anticarcinogenic activity of common natural flavonoids on various human cervical cancer cell lines are compiled and analyzed showing perspectives for the use of these secondary metabolites in the treatment of cervical carcinoma as well as in the development of novel chemotherapeutic drugs. Such anticancer effects of flavonoids seem to differentially depend on the cellular type and origin of cervical carcinoma creating possibilities for specific targeting in the future. Besides the cytotoxic activity per se, several flavonoids can also contribute to the increase in efficacy of conventional therapies rendering tumor cells more sensitive to standard chemotherapeutics and irradiation. Although the current knowledge is still rather scarce and further studies are certainly needed, it is clear that natural flavonoids may have a great potential to benefit cervical cancer patients.
    Asian Pacific journal of cancer prevention: APJCP 10/2014; 15(19):8007-8019. DOI:10.7314/APJCP.2014.15.19.8007 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer is highly invasive, aggressively malignant, and amongst the most prevalent of all forms of cancer. Despite improved management strategies, early stage diagnosis of gastric cancer and accurate prognostic assessment is still lacking. Several recent reports have indicated that the pathogenesis of gastric cancer involves complex molecular mechanisms and multiple genetic and epigenetic alterations in oncogenes and tumor suppressor genes. Functional inactivation of the tumor suppressor protein PTEN (Phosphatase and Tensin Homolog) has been detected in multiple cases of gastric cancer, and already shown to be closely linked to the development, progression and prognosis of the disease. Inactivation of PTEN can be attributed to gene mutation, loss of heterozygosity, promoter hypermethylation, microRNA- mediated regulation of gene expression, and post-translational phosphorylation. PTEN is also involved in mechanisms regulating tumor resistance to chemotherapy. This review provides a comprehensive analysis of PTEN and its roles in gastric cancer, and emphasizes its potential benefits in early diagnosis and gene therapy-based treatment strategies.
    Asian Pacific journal of cancer prevention: APJCP 01/2014; 15(1):17-24. DOI:10.7314/APJCP.2014.15.1.17 · 1.50 Impact Factor