Article

Cryo-EM study of Hepatitis B virus core antigen capsids decorated with antibodies from a human patient.

Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Journal of Structural Biology (Impact Factor: 3.37). 10/2011; 177(1):145-51. DOI: 10.1016/j.jsb.2011.10.003
Source: PubMed

ABSTRACT The capsid (core antigen, HBcAg) is one of three major antigens present in patients infected with Hepatitis B virus. The capsids are icosahedral particles, whose most prominent features are spikes that extend 25 Å out from the contiguous "floor". At the spike tip are two copies of the "immunodominant loop". Previously, the epitopes of seven murine monoclonal antibodies have been identified by cryo-EM analysis of Fab-labeled capsids. All but one are conformational and all but one map around the spike tip. The exception, which is also the tightest-binder, straddles an inter-molecular interface on the floor. Seeking to relate these observations to the immunological response of infected humans, we isolated anti-cAg antibodies from a patient, prepared Fabs, and analyzed their binding to capsids. A priori, one possibility was that many different Fabs would give an undifferentiated continuum of Fab-related density. In fact, the density observed was highly differentiated and could be reproduced by modeling with just five Fabs, three binding to the spike and two to the floor. These results show that epitopes on the floor, far (~30 Å) from the immunodominant loop, are clinically relevant and that murine anti-cAg antibodies afford a good model for the human system.

0 Bookmarks
 · 
123 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infection of humans by hepatitis B virus (HBV) induces the copious production of antibodies directed against the capsid protein (Cp). A large variety of anticapsid antibodies have been identified that differ in their epitopes. These data, and the status of the capsid as a major clinical antigen, motivate studies to achieve a more detailed understanding of their interactions. In this study, we focused on the Fab fragments of two monoclonal antibodies, E1 and 3120. E1 has been shown to bind to the side of outward-protruding spikes whereas 3120 binds to the "floor" region of the capsid, between spikes. We used hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to investigate the effects on HBV capsids of binding these antibodies. Conventionally, capsids loaded with saturating amounts of Fabs would be too massive to be readily amenable to HDX-MS. However, by focusing on the Cp protein, we were able to acquire deuterium uptake profiles covering the entire 149-residue sequence and reveal, in localized detail, changes in H/D exchange rates accompanying antibody binding. We find increased protection of the known E1 and 3120 epitopes on the capsid upon binding and show that regions distant from the epitopes are also affected. In particular, the α2a helix (residues 24-34) and the mobile C-terminus (residues 141-149) become substantially less solvent-exposed. Our data indicate that even at substoichiometric antibody binding an overall increase in the rigidity of the capsid is elicited, as well as a general dampening of its breathing motions.
    Journal of the American Chemical Society 04/2013; · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The capsid of hepatitis B virus (HBV) is a major viral antigen and important diagnostic indicator. HBV capsids have prominent protrusions ('spikes') on their surface and are unique in having either T = 3 or T = 4 icosahedral symmetry. Mouse monoclonal and also human polyclonal antibodies bind either near the spike apices (historically the 'α-determinant') or in the 'floor' regions between them (the 'β-determinant'). Native mass spectrometry (MS) and gas-phase electrophoretic mobility molecular analysis (GEMMA) were used to monitor the titration of HBV capsids with the antigen-binding domain (Fab) of mAb 3120, which has long defined the β-determinant. Both methods readily distinguished Fab binding to the two capsid morphologies and could provide accurate masses and dimensions for these large immune complexes, which range up to ~8 MDa. As such, native MS and GEMMA provide valuable alternatives to a more time-consuming cryo-electron microscopy analysis for preliminary characterisation of virus-antibody complexes.
    Analytical and Bioanalytical Chemistry 12/2013; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic hepatitis B virus (HBV) infection afflicts millions worldwide with cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a nonparticulate variant of the protein (core antigen, HBcAg) that forms the building-blocks of capsids. HBeAg is not required for virion production, but is implicated in establishing immune tolerance and chronic infection. Here, we report the crystal structure of HBeAg, which clarifies how the short N-terminal propeptide of HBeAg induces a radically altered mode of dimerization relative to HBcAg (∼140° rotation), locked into place through formation of intramolecular disulfide bridges. This structural switch precludes capsid assembly and engenders a distinct antigenic repertoire, explaining why the two antigens are cross-reactive at the T cell level (through sequence identity) but not at the B cell level (through conformation). The structure offers insight into how HBeAg may establish immune tolerance for HBcAg while evading its robust immunogenicity.
    Structure 12/2012; · 6.79 Impact Factor

Full-text (2 Sources)

Download
53 Downloads
Available from
May 16, 2014