Article

CXCR4 Activation Defines a New Subgroup of Sonic Hedgehog-Driven Medulloblastoma

Department of Pediatrics, Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri 63110, USA.
Cancer Research (Impact Factor: 9.28). 11/2011; 72(1):122-32. DOI: 10.1158/0008-5472.CAN-11-1701
Source: PubMed

ABSTRACT Medulloblastoma prognosis tends to be poor, despite aggressive therapy, but defining molecular subgroups may identify patients who could benefit from targeted therapies. This study used human gene array and associated clinical data to identify a new molecular subgroup of medulloblastoma characterized by coactivation of the Sonic hedgehog (SHH) and CXCR4 pathways. SHH-CXCR4 tumors were more common in the youngest patients where they were associated with desmoplastic histology. In contrast to tumors activating SHH but not CXCR4, coactivated tumors exhibited greater expression of Math1 and cyclin D1. Treatment with the CXCR4 antagonist AMD3100 inhibited cyclin D1 expression and maximal tumor growth in vivo. Mechanistic investigations revealed that SHH activation stimulated CXCR4 cell surface localization and effector signaling activity, whereas SHH absence caused CXCR4 to assume an intracellular localization. Taken together, our findings define a new medulloblastoma subgroup characterized by a functional interaction between the SHH and CXCR4 pathways, and they provide a rationale to clinically evaluate combined inhibition of SHH and CXCR4 for medulloblastoma treatment.

Download full-text

Full-text

Available from: Kristen L Kroll, Aug 12, 2014
0 Followers
 · 
187 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Hedgehog (Hh) pathway plays dual roles in proliferation and patterning during embryonic development, but the mechanism(s) that distinguish the mitogenic and patterning activities of Hh signalling are not fully understood. An additional level of complexity is provided by the observation that Hh signalling can both promote and inhibit cell proliferation. One model to account for this apparent paradox is that Hh signalling primarily regulates cell cycle kinetics, such that activation of Hh signalling promotes fast cycling and an earlier cell cycle exit. Here we report that activation of Hh signalling promotes endodermal cell proliferation but inhibits proliferation in neighbouring non-endodermal cells, suggesting that the cell cycle kinetics model is insufficient to account for the opposing proliferative responses to Hh signalling. We show that expression of the chemokine receptor Cxcr4a is a critical parameter that determines the proliferative response to Hh signalling, and that loss of Cxcr4a function attenuates the transcription of cell cycle regulator targets of Hh signalling without affecting general transcriptional targets. We show that Cxcr4a inhibits PKA activity independently of Hh signalling, and propose that Cxcr4a enhances Hh-dependent proliferation by promoting the activity of Gli1. Our results indicate that Cxcr4a is required for Hh-dependent cell proliferation but not for Hh-dependent patterning, and suggest that the parallel activation of Cxcr4a is required to modulate the Hh pathway to distinguish between patterning and proliferation.
    Development 08/2012; 139(15):2711-20. DOI:10.1242/dev.074930 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deregulated developmental processes in the cerebellum cause medulloblastoma, the most common pediatric brain malignancy. About 25 to 30% of cases are caused by mutations increasing the activity of the Sonic hedgehog (Shh) pathway, a critical mitogen in cerebellar development. The proto-oncogene Smoothened (Smo) is a key transducer of the Shh pathway. Activating mutations in Smo that lead to constitutive activity of the Shh pathway have been identified in human medulloblastoma. To understand the developmental and oncogenic effects of two closely positioned point mutations in Smo, we characterized NeuroD2-SmoA2 mice and compared them to NeuroD2-SmoA1 mice. While both SmoA1 and SmoA2 transgenes cause medulloblastoma with similar frequencies and timing, SmoA2 mice have severe aberrations in cerebellar development, whereas SmoA1 mice are largely normal during development. Intriguingly, neurologic function, as measured by specific tests, is normal in the SmoA2 mice despite extensive cerebellar dysplasia. We demonstrate how two nearly contiguous point mutations in the same domain of the encoded Smo protein can produce striking phenotypic differences in cerebellar development and organization in mice.
    Molecular and Cellular Biology 08/2012; 32(20):4104-15. DOI:10.1128/MCB.00862-12 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that arise in connective tissue surrounding peripheral nerves. They occur sporadically in a subset of patients with neurofibromatosis type 1 (NF1). MPNSTs are highly aggressive, therapeutically resistant, and typically fatal. Using comparative transcriptome analysis, we identified CXCR4, a G-protein-coupled receptor, as highly expressed in mouse models of NF1-deficient MPNSTs, but not in nontransformed precursor cells. The chemokine receptor CXCR4 and its ligand, CXCL12, promote MPNST growth by stimulating cyclin D1 expression and cell-cycle progression through PI3-kinase (PI3K) and β-catenin signaling. Suppression of CXCR4 activity either by shRNA or pharmacological inhibition decreases MPNST cell growth in culture and inhibits tumorigenesis in allografts and in spontaneous genetic mouse models of MPNST. We further demonstrate conservation of these activated molecular pathways in human MPNSTs. Our findings indicate a role for CXCR4 in NF1-associated MPNST development and identify a therapeutic target.
    Cell 02/2013; 152(5):1077-90. DOI:10.1016/j.cell.2013.01.053 · 33.12 Impact Factor