Article

Genome-wide association study reveals class I MHC-restricted T cell-associated molecule gene (CRTAM) variants interact with vitamin D levels to affect asthma exacerbations.

Channing Laboratory, Brigham and Women's Hospital, Boston, Mass 02115, USA.
The Journal of allergy and clinical immunology (Impact Factor: 12.05). 11/2011; 129(2):368-73, 373.e1-5. DOI: 10.1016/j.jaci.2011.09.034
Source: PubMed

ABSTRACT It has recently been shown that vitamin D deficiency can increase asthma development and severity and that variations in vitamin D receptor genes are associated with asthma susceptibility.
We sought to find genetic factors that might interact with vitamin D levels to affect the risk of asthma exacerbation.
We conducted a genome-wide study of gene-vitamin D interaction on asthma exacerbations using population-based and family-based approaches on 403 subjects and trios from the Childhood Asthma Management Program. Twenty-three polymorphisms with significant interactions were studied in a replication analysis in 584 children from a Costa Rican cohort.
We identified 3 common variants in the class I MHC-restricted T cell-associated molecule gene (CRTAM) that were associated with an increased rate of asthma exacerbations based on the presence of a low circulating vitamin D level. These results were replicated in a second independent population (unadjusted combined interaction, P = .00028-.00097; combined odds ratio, 3.28-5.38). One variant, rs2272094, is a nonsynonymous coding polymorphism of CRTAM. Functional studies on cell lines confirmed the interaction of vitamin D and rs2272094 on CRTAM expression. CRTAM is highly expressed in activated human CD8(+) and natural killer T cells, both of which have been implicated in asthmatic patients.
The findings highlight an important gene-environment interaction that elucidates the role of vitamin D and CD8(+) and natural killer T cells in asthma exacerbation in a genome-wide gene-environment interaction study that has been replicated in an independent population. The results suggest the potential importance of maintaining adequate vitamin D levels in subsets of high-risk asthmatic patients.

0 Bookmarks
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma exacerbations and severe asthma are linked with high morbidity, significant mortality and high treatment costs. Recurrent asthma exacerbations cause a decline in lung function and, in childhood, are linked to development of persistent asthma. This position paper, from the European Academy of Allergy and Clinical Immunology, highlights the shortcomings of current treatment guidelines for patients suffering from frequent asthma exacerbations and those with difficult-to-treat asthma and severe treatment-resistant asthma. It reviews current evidence that supports a call for increased awareness of (i) the seriousness of asthma exacerbations and (ii) the need for novel treatment strategies in specific forms of severe treatment-resistant asthma. There is strong evidence linking asthma exacerbations with viral airway infection and underlying deficiencies in innate immunity and evidence of a synergism between viral infection and allergic mechanisms in increasing risk of exacerbations. Nonadherence to prescribed medication has been identified as a common clinical problem amongst adults and children with difficult-to-control asthma. Appropriate diagnosis, assessment of adherence and other potentially modifiable factors (such as passive or active smoking, ongoing allergen exposure, psychosocial factors) have to be a priority in clinical assessment of all patients with difficult-to-control asthma. Further studies with improved designs and new diagnostic tools are needed to properly characterize (i) the pathophysiology and risk of asthma exacerbations, and (ii) the clinical and pathophysiological heterogeneity of severe asthma.
    Allergy 12/2013; 68(12):1520-31. · 6.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Class-I MHC-restricted T cell-associated molecule (CRTAM) is a protein expressed by activated natural killer T (NKT) cells, natural killer (NK) cells, CD8 T cells, and certain CD4 T lymphocytes. It is also expressed in Purkinje neurons and epithelial cells. However, no studies have examined the expression of CRTAM in peripheral blood cells during homeostasis or disease. Therefore, we explored whether CRTAM expression is influenced by the presence of allergic asthma.
    Allergy Asthma and Clinical Immunology 01/2014; 10(1):46.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The major histocompatibility complex (MHC) is one of the most intensively investigated, genetically diverse regions of the genome. In its extended form, it encodes more than 400 genes critical to immunity but is also involved in many other functions. In 2009, three simultaneously published genome-wide association studies (GWAS) reported the first compelling evidence for involvement of the MHC in schizophrenia susceptibility. In this review, we describe the structure and function of the MHC, discuss some of the challenges for genetic analysis of the region, and provide an update on findings from GWAS studies before describing potential approaches to interpreting the role of the locus in schizophrenia etiology. The GWAS literature supports involvement of the MHC locus in schizophrenia susceptibility. Current evidence suggests that the MHC plays a more significant role in schizophrenia susceptibility than in other psychiatric disorders. Because of the substantial diversity at the locus, there are differences in the implicated risk variants between ancestral groups, as there are for many other disorders. This is somewhat different than the pattern emerging at other loci. The association findings presently capture large genomic regions, with at least some evidence to suggest that multiple signals may be involved. Based on notable successes in other disorders, we suggest approaches to refining association signals at the locus. Finally, we discuss that these genetic data may be used to understand how the MHC contributes to the complex etiology of schizophrenia.
    Biological psychiatry 09/2013; · 8.93 Impact Factor

Full-text (2 Sources)

Download
47 Downloads
Available from
May 29, 2014