Article

Insights into fruit function from the proteome of the hypanthium.

Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
Journal of plant physiology (Impact Factor: 2.5). 11/2011; 169(1):12-9. DOI:10.1016/j.jplph.2011.10.001
Source: PubMed

ABSTRACT Apple (Malus×domestica Borkh.) was used as a model to studying essential biological processes occurring in mature fruit hypanthium, commonly referred to as the fruit flesh or pulp, a highly active tissue where numerous metabolic processes such as carbohydrate metabolism and signal transduction occur. To understand the complex biological processes occurring in the hypanthium, a proteomics approach was used to analyze the proteome from freshly harvested ripe apple fruits. A total of 290 well-resolved spots were detected using two-dimensional gel electrophoresis (2-DE). Out of these, 216 proteins were identified representing 116 non-redundant proteins using matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and either the MASCOT or ProteinProspector engine for peptide mass fingerprinting (PMF) database searching. Identified proteins were classified into 13 major functional categories. Among these, the energy metabolism class was the most represented and included 50% of proteins homologous to Arabidopsis proteins that are involved in the response to biotic and abiotic stresses, suggesting a dual role for these proteins in addition to energy metabolism. We also identified dynein heavy chain in the hypanthium although this protein has been proposed as absent from angiosperms and thus suggest that the lack of dyneins in higher plants studied to date may not be a general characteristic to angiosperm genomic organisation. We therefore conclude that the detection and elucidation of the apple hypanthium proteome is an indispensable step towards the comprehension of fruit metabolism, the integration of genomic, proteomic and metabolomic data to agronomic trait information and thus fruit quality improvements.

0 0
 · 
0 Bookmarks
 · 
93 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms 'generation of precursor metabolites and energy' and secondly, the biofilm proteome mainly changes in 'outer membrane and receptor or transport'. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
    BMC Microbiology 08/2013; 13(1):186. · 3.10 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The second messenger 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological Significance This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses.
    Journal of proteomics 03/2013; · 5.07 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Crop plants contain large amounts of secondary compounds that interfere with protein extraction and gel-based proteomic analysis. Thus, a protein extraction protocol that can be easily applied to various crop materials with minimal optimization is essential. Here we describe a universal protocol for total protein extraction involving trichloroacetic acid (TCA)/acetone precipitation followed by SDS and phenol extraction. Through SDS extraction, the proteins precipitated by the TCA/acetone treatment can be fully resolubilized and then further purified by phenol extraction. This protocol combines TCA/acetone precipitation, which aggressively removes nonprotein compounds, and phenol extraction, which selectively dissolves proteins, resulting in effective purification of proteins from crop tissues. This protocol can also produce high-quality protein preparations from various recalcitrant tissues, and therefore it has a wide range of applications in crop proteomic analysis. Designed to run on a small scale, this protocol can be completed within 5 h.
    Nature Protocol 02/2014; 9(2):362-74. · 8.36 Impact Factor