Emergence of Persistent Networks in Long-Term Intracranial EEG Recordings

Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 11/2011; 31(44):15757-67. DOI: 10.1523/JNEUROSCI.2287-11.2011
Source: PubMed

ABSTRACT Over the past two decades, the increased ability to analyze network relationships among neural structures has provided novel insights into brain function. Most network approaches, however, focus on static representations of the brain's physical or statistical connectivity. Few studies have examined how brain functional networks evolve spontaneously over long epochs of continuous time. To address this, we examine functional connectivity networks deduced from continuous long-term electrocorticogram recordings. For a population of six human patients, we identify a persistent pattern of connections that form a frequency-band-dependent network template, and a set of core connections that appear frequently and together. These structures are robust, emerging from brief time intervals (~100 s) regardless of cognitive state. These results suggest that a metastable, frequency-band-dependent scaffold of brain connectivity exists from which transient activity emerges and recedes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Models of spiking neural networks have a great potential to become a crucial tool in the development of complex network theory. Of particular interest, these models can be used to better understand the important class of brain functional networks, which are frequently studied in the context of computational network analysis. A fundamental question is whether functional connectivity sampling via surface multichannel recordings is able to reproduce the main connectivity features of the underlying spatial neural network. In this work we address this problem through computational modeling using the integrate-and-fire spiking neuron model, which enabled us to relate neural connectivity and the respective mesoscopic dynamics. Functional samples were then compared to an idealized spatial neural network model in terms of established topological network measurements. Results show that some measurements (e.g., betweenness centrality) are able to fairly approximate functional and spatial networks. Therefore, under specific circumstances of sampling size and simulation approach, it is possible to say that functional networks are able to reproduce connectivity features of the underlying neural network.
    2013 BRICS Congress on Computational Intelligence & 11th Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC); 09/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience.
    Journal of Cognitive Neuroscience 03/2015; DOI:10.1162/jocn_a_00810 · 4.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seizure detection and prediction studies using scalp- or intracranial-EEG measurements often focus on short-length recordings around the occurrence of the seizure, normally ranging between several seconds and up to a few minutes before and after the event. The underlying assumption in these studies is the presence of a relatively constant EEG activity in the interictal period, that is presumably interrupted by the occurrence of a seizure, at the time the seizure starts or slightly earlier. In this study, we put this assumption under test, by examining long-duration scalp EEG recordings, ranging between 22 and 72 hours, of five patients with epilepsy. For each patient, we construct functional brain networks, by calculating correlations between the scalp electrodes, and examine how these networks vary in time. The results suggest not only that the network varies over time, but it does so in a periodic fashion, with periods ranging between 11 and 25 hours.

Full-text (2 Sources)

Available from
May 19, 2014