Article

High Temperature Requirement Factor A1 (HTRA1) Gene Regulates Angiogenesis through Transforming Growth Factor-β Family Member Growth Differentiation Factor 6

Molecular Medicine Research Center and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
Journal of Biological Chemistry (Impact Factor: 4.57). 11/2011; 287(2):1520-6. DOI: 10.1074/jbc.M111.275990
Source: PubMed

ABSTRACT Genome-wide association study (GWAS) has identified genetic variants in the promoter region of the high temperature requirement factor A1 (HTRA1) gene associated with age-related macular degeneration (AMD). As a secreted serine protease, HTRA1 has been reported to interact with members of the transforming growth factor-β (TGF-β) family and regulate their signaling pathways. Growth differentiation factor 6 (GDF6), a member of the TGF-β family, is involved in ectoderm patterning and eye development. Mutations in GDF6 have been associated with abnormal eye development that may result in microphthalmia and anophthalmia. In this report, we identified a single nucleotide polymorphism (SNP) rs6982567 A/G near the GDF6 gene that is significantly associated with AMD (p value = 3.54 × 10(-8)). We demonstrated that the GDF6 AMD risk allele (rs6982567 A) is associated with decreased expression of the GDF6 and increased expression of HTRA1. Similarly, the HTRA1 AMD risk allele (rs10490924 T) is associated with decreased GDF6 and increased HTRA1 expression. We observed decreased vascular development in the retina and significant up-regulation of GDF6 gene in the RPE layer, retinal and brain tissues in HTRA1 knock-out (htra1(-/-)) mice as compared with the wild-type counterparts. Furthermore, we showed enhanced SMAD signaling in htra1(-/-) mice. Our data suggests a critical role of HTRA1 in the regulation of angiogenesis via TGF-β signaling and identified GDF6 as a novel disease gene for AMD.

0 Followers
 · 
271 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that HtrA1 (high-temperature requirement A1) is involved in modulating crucial cellular processes and implicated in life-threatening diseases, such as cancer and neuropathological disorders; however, the exact functions of this protease in vivo remain unknown. Here, we show that loss of HtrA1 function increases fibroblast growth factor 8 (FGF8) mRNA levels and triggers activation of FGF signaling, resulting in dorsalization in zebrafish embryos. Notably, HtrA1 directly cleaves FGF8 in the extracellular region, and this cleavage results in decreased activation of FGF signaling, which is essential for many physiological processes. Therefore, HtrA1 is indispensable for dorsoventral patterning in early zebrafish embryogenesis and serves as a key upstream regulator of FGF signaling through the control of FGF levels. Furthermore, this study offers insight into new strategies to control human diseases associated with HtrA1 and FGF signaling.
    Molecular and Cellular Biology 09/2012; 32(21):4482-92. DOI:10.1128/MCB.00872-12 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple genetic studies have suggested that high-temperature requirement serine protease (HTRA1) is associated with polypoidal choroidal vasculopathy (PCV). To date, no functional studies have investigated the biological effect of HTRA1 on vascular endothelial cells, essential vascular components involved in polypoidal vascular abnormalities and arteriosclerosis-like changes. In vitro studies were performed to investigate the effect of HTRA1 on the regulation of fibronectin, laminin, vascular endothelial growth factor (VEGF), platelet derived growth factor receptor (PDGFR) and matrix metalloparoteinases 2 (MMP-2) and the role of HTRA1 in choroid-retina endothelial (RF/6A) and human umbilical vein endothelial (HUVEC) cells. Lentivirus-mediated overexpression of HTRA1 was used to explore effects of the protease on RF/6A and HUVEC cells in vitro. HTRA1 overexpression inhibited the proliferation, cell cycle, migration and tube formation of RF/6A and HUVEC cells, effects that might contribute to the early stage of PCV pathological lesions. Fibronectin mRNA and protein levels were significantly down-regulated following the upregulation of HTRA1, whereas the expressions of laminin, VEGF and MMP-2 were unaffected by alterations in HTRA1 expression. The decreased biological function of vascular endothelial cells and the degradation of extracellular matrix proteins, such as fibronectin, may be involved in a contributory role for HTRA1 in PCV pathogenesis.
    PLoS ONE 10/2012; 7(10):e46115. DOI:10.1371/journal.pone.0046115 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To present the current understanding of age-related macular degeneration (AMD) pathogenesis, based on clinical evidence, epidemiologic data, histopathologic examination, and genetic data; to provide an update on current and emerging therapies; and to propose an integrated model of the pathogenesis of AMD. Review of published clinical and experimental studies. Analysis and synthesis of clinical and experimental data. We are closer to a complete understanding of the pathogenesis of AMD, having progressed from clinical observations to epidemiologic observations and clinical pathologic correlation. More recently, modern genetic and genomic studies have facilitated the exploration of molecular pathways. It seems that AMD is a complex disease that results from the interaction of genetic susceptibility with aging and environmental factors. Disease progression also seems to be driven by a combination of genetic and environmental factors. Therapies based on pathophysiologic features have changed the paradigm for treating neovascular AMD. With improved understanding of the underlying genetic susceptibility, we can identify targets to halt early disease and to prevent progression and vision loss.
    American Journal of Ophthalmology 01/2013; 155(1):1-35.e13. DOI:10.1016/j.ajo.2012.10.018 · 4.02 Impact Factor
Show more

Preview

Download
3 Downloads
Available from