A multiplex SNP assay for the dissection of human Y-chromosome haplogroup O representing the major paternal lineage in East and Southeast Asia.

Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
Journal of Human Genetics (Impact Factor: 2.53). 11/2011; 57(1):65-9. DOI: 10.1038/jhg.2011.120
Source: PubMed

ABSTRACT The majority of human Y chromosomes in men from East and Southeast Asia, and a considerable proportion of Oceanian men, especially those from Remote Oceania, belong to haplogroup O, characterized by a 5-bp deletion known as M175 (rs2032678). Recent advances in Y-SNP (single-nucleotide polymorphism) discovery have substantially improved the phylogenetic resolution of haplogroup O sublineages. By taking advantage of this recent knowledge, we hereby introduce a sensitive Y-SNP multiplex genotyping assay for the dissection of haplogroup O into its most significant sublineages. The multiplex assay thus provides an efficient way to infer patrilineal biogeographic ancestry in males of Asian/Oceanian patrilineal descent, and is suitable for applications in human population genetics, anthropological, genealogical, as well as forensic studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Mitochondrial disorders (MD) are multisystem diseases that arise as a result of dysfunction of the oxidative phosphorylation system. The predominance of neuromuscular manifestations in MD could mask the presence of other clinical phenotypes such as cardiac dysfunction. Reported here is a retrospective study, the main objective of which was to characterize the clinical and molecular features of a cohort of patients with cardiomyopathy and MD. Methods and Results: Hospital charts of 2,520 patients, evaluated for presumed MD were reviewed. The clinical criterion for inclusion in this study was the presence of a cardiac disturbance accompanied by a mitochondrial dysfunction. Only 71 patients met this criterion. The mitochondrial genome (mtDNA) could be sequenced only in 45 and the pathogenicity of 2 of the found changes was investigated using transmitochondrial cybrids. Three nucleotide changes in mtDNA that may be relevant and 3 with confirmed pathogenicity were identified but no mutations were found in the 13 nuclear genes analyzed. Conclusions: The mtDNA should be sequenced in patients with cardiac dysfunction accompanied by symptoms suggestive of MD; databases should be carefully and periodically screened to discard mitochondrial variants that could be associated with MD; functional assays are necessary to classify mitochondrial variants as pathogenic or polymorphic; and additional efforts must be made in order to identify nuclear genes that can explain some as yet uncharacterized molecular features of mitochondrial cardiomyopathy.
    Circulation Journal 08/2013; DOI:10.1253/circj.CJ-13-0557 · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited DNA polymorphisms located within the non-recombing portion of the human Y chromosome provide a powerful means of tracking the patrilineal ancestry of male individuals. Recently, we introduced an efficient genotyping method for the detection of the basal Y-chromosome haplogroups A to T, as well as an additional method for the dissection of haplogroup O into its sublineages. To further extend the use of the Y chromosome as an evolutionary marker, we here introduce a set of genotyping assays for fine-resolution subtyping of haplogroups E, G, I, J and R, which make up the bulk of Western Eurasian and African Y chromosomes. The marker selection includes a total of 107 carefully selected bi-allelic polymorphsisms that were divided into eight hierarchically organized multiplex assays (two for haplogroup E, one for I, one for J, one for G and three for R) based on the single-base primer extension (SNaPshot) technology. Not only does our method allow for enhanced Y-chromosome lineage discrimination, the more restricted geographic distribution of the subhaplogroups covered also enables more finescaled estimations of patrilineal bio-geographic origin. Supplementing our previous method for basal Y-haplogroup detection, the currently introduced assays are thus expected to be of major relevance for future DNA studies targeting male-specific ancestry for forensic, anthropological and genealogical purposes. This article is protected by copyright. All rights reserved.
    Electrophoresis 09/2013; 34(20-21). DOI:10.1002/elps.201300210 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inundation of evolutionary markers expedited in Human Genome Project and 1000 Genome Consortium has necessitated pruning of redundant and dependent variables. Various computational tools based on machine-learning and data-mining methods like feature selection/extraction have been proposed to escape the curse of dimensionality in large datasets. Incidentally, evolutionary studies, primarily based on sequentially evolved variations have remained un-facilitated by such advances till date. Here, we present a novel approach of recursive feature selection for hierarchical clustering of Y-chromosomal SNPs/haplogroups to select a minimal set of independent markers, sufficient to infer population structure as precisely as deduced by a larger number of evolutionary markers. To validate the applicability of our approach, we optimally designed MALDI-TOF mass spectrometry-based multiplex to accommodate independent Y-chromosomal markers in a single multiplex and genotyped two geographically distinct Indian populations. An analysis of 105 world-wide populations reflected that 15 independent variations/markers were optimal in defining population structure parameters, such as FST, molecular variance and correlation-based relationship. A subsequent addition of randomly selected markers had a negligible effect (close to zero, i.e. 1 × 10(-3)) on these parameters. The study proves efficient in tracing complex population structures and deriving relationships among world-wide populations in a cost-effective and expedient manner.
    Nucleic Acids Research 07/2014; 42(15). DOI:10.1093/nar/gku585 · 8.81 Impact Factor


Available from
May 22, 2014