Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening

Plant Systems Biology Lab, Departmento de Biologia Vegetal/ICAT, Center for Biodiversity, Functional and Integrative Genomics-BioFIG, FCUL, 1749-016 Lisboa, Portugal.
BMC Plant Biology (Impact Factor: 3.94). 11/2011; 11:149. DOI: 10.1186/1471-2229-11-149
Source: PubMed

ABSTRACT Grapes (Vitis vinifera L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses.
Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through véraison and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen® genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening.
Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two grapevine glucose-6-Pi plastidial transporters differently expressed in plant organs and in response to environmental and hormonal signals are characterized. They are involved in starch accumulation in berries and canes. In grapevine, starch accumulation in the trunk is important for winter storage of carbon and in the flower for reproductive development. Berries also accumulate starch in their plastids, which are also involved in the synthesis of aroma compounds important for fruit quality. The present work characterizes two glucose-phosphate translocators (VvGPT1, VvGPT2) that control the accumulation of starch in grape amyloplasts. Three different splicing variants identified for VvGPT2 (VvGPT2α, VvGPT2β and VvGPT2Ω) were more expressed in the leaves than in other organs. In contrast, VvGPT1 transcripts were more abundant in mature berries, canes and flowers than in the leaves. Expression of 35S-VvGPT1-GFP and 35S-VvGPT2Ω-GFP in tobacco leaf epidermal cells showed that the fusion proteins localized at the plastidial envelope. Complementation of the Arabidopsis pgi1-1 mutant impaired in leaf starch synthesis restored its ability to synthesize starch, demonstrating that VvGPT1 and VvGPT2Ω mediate the transport of glucose-6-Pi across the plastidial envelope. In grape cell suspensions, ABA, light and galactinol, together with sucrose and fructose, significantly increased the transcript abundance of VvGPT1, whereas VvGPT2Ω expression was affected only by sucrose. In addition, elicitation with methyl jasmonate strongly upregulated VvGPT1, VvGPT2Ω and VvPAL1, suggesting a role for GPTs in the production of secondary compounds in grapevine. Moreover, in grapevines cultivated in field conditions, VvGPT1 expression was higher in berries more exposed to the sun and subjected to higher temperatures. Although both VvGPT1 and VvGPT2 mediate the same function at the molecular level, they exhibit different expression levels and regulation in plant organs and in response to environmental and hormonal signals.
    Planta 05/2015; DOI:10.1007/s00425-015-2329-x · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sorbitol dehydrogenase (SDH, EC is the key enzyme involved in sorbitol metabolism in higher plants. SDH genes in some Rosaceae species could be divided into two groups. L-idonate-5-dehydrogenase (LIDH, EC is involved in tartaric acid (TA) synthesis in Vitis vinifera and is highly homologous to plant SDHs. Despite efforts to understand the biological functions of plant SDH, the evolutionary history of plant SDH genes and their phylogenetic relationship with the V. vinifera LIDH gene have not been characterized. A total of 92 SDH genes were identified from 42 angiosperm species. SDH genes have been highly duplicated within the Rosaceae family while monocot, Brassicaceae and most Asterid species exhibit singleton SDH genes. Core Eudicot SDHs have diverged into two phylogenetic lineages, now classified as SDH Class I and SDH Class II. V. vinifera LIDH was identified as a Class II SDH. Tandem duplication played a dominant role in the expansion of plant SDH family and Class II SDH genes were positioned in tandem with Class I SDH genes in several plant genomes. Protein modelling analyses of V. vinifera SDHs revealed 19 putative active site residues, three of which exhibited amino acid substitutions between Class I and Class II SDHs and were influenced by positive natural selection in the SDH Class II lineage. Gene expression analyses also demonstrated a clear transcriptional divergence between Class I and Class II SDH genes in V. vinifera and Citrus sinensis (orange). Phylogenetic, natural selection and synteny analyses provided strong support for the emergence of SDH Class II by positive natural selection after tandem duplication in the common ancestor of core Eudicot plants. The substitutions of three putative active site residues might be responsible for the unique enzyme activity of V. vinifera LIDH, which belongs to SDH Class II and represents a novel function of SDH in V. vinifera that may be true also of other Class II SDHs. Gene expression analyses also supported the divergence of SDH Class II at the expression level. This study will facilitate future research into understanding the biological functions of plant SDHs.
    BMC Plant Biology 04/2015; 15(1):101. DOI:10.1186/s12870-015-0478-5 · 3.94 Impact Factor
  • Source