Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157:H7.

School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-74, Republic of Korea.
Biofouling (Impact Factor: 3.7). 11/2011; 27(10):1095-104. DOI: 10.1080/08927014.2011.633704
Source: PubMed

ABSTRACT Bacterial biofilms are associated with persistent infections due to their high resistance to antimicrobial agents. Hence, controlling pathogenic biofilm formation is important in bacteria-related diseases. Honey, at a low concentration of 0.5% (v/v), significantly reduced biofilm formation in enterohemorrhagic Escherichia coli O157:H7 without inhibiting the growth of planktonic cells. Conversely, this concentration did not inhibit commensal E. coli K-12 biofilm formation. Transcriptome analyses showed that honey significantly repressed curli genes (csgBAC), quorum sensing genes (AI-2 importer and indole biosynthesis), and virulence genes (LEE genes). Glucose and fructose in the honeys were found to be key components in reducing biofilm formation by E. coli O157:H7 through the suppression of curli production and AI-2 import. Furthermore, honey, glucose and fructose decreased the colonization of E. coli O157:H7 cells on human HT-29 epithelial cells. These results suggest that low concentrations of honey, such as in honeyed water, can be a practical means for reducing the colonization and virulence of pathogenic E. coli O157:H7.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
    Microbiology and molecular biology reviews: MMBR 09/2014; 78(3):510-543. DOI:10.1128/MMBR.00013-14 · 15.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli O157:H7 produces Shiga toxin (Stx) which is heat stable and causes Hemolytic Uremic Syndrome (HUS), a serious disease associated with bloody diarrhea and even death. To ensure food safety, both live E. coli O157:H7 and its toxin production in food products need to be controlled. Natural ingredients with inhibitory effects on E. coli O157:H7 growth and toxin production are top choices of antimicrobials for the food industry. The objectives of this study were to evaluate efficacy of grape seed extract (GSE) against the growth, swimming motility and Stx production of E. coli O157:H7. The disc diffusion assay indicated that 3.2 mg GSE per disc resulted in an inhibition zone of 14.8 ± 0.21 mm. The minimal inhibitory concentration of GSE against E. coli O157: H7 was 4.0 mg/ml. At high inoculation level (1 × 107 CFU/ml), including GSE at 0.25–2.0 mg/ml reduced Stx production without inhibiting E. coli O157:H7 growth. At 5 × 105 CFU/ml inoculation level, 2.0 and 4.0 mg/ml GSE effectively inhibited the growth of E. coli O157:H7 for at least 72 h, however, a low level of GSE (0.125–1.0 mg/ml) enhanced E. coli O157:H7 growth and Stx2 production. At 4 mg/ml, GSE completely abolished Stx2 production in addition to it bactericidal effect against E. coli O157:H7. In addition, GSE at concentration as low as 0.125% blocked the swimming motility, which is important for E. coli O157:H7 surface adherence. In conclusion, GSE is effective in inhibiting the motility of E. coli O157:H7, GSE shows potential to be used as a natural antimicrobial to control E. coli O157:H7.
    Food Control 05/2015; 51. DOI:10.1016/j.foodcont.2014.11.024 · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quorum sensing (QS) is an important regulatory mechanism in biofilm formation and differentiation. Interference with QS can affect biofilm development and antimicrobial susceptibility. This study evaluates the potential of selected phytochemical products to inhibit QS. Three isothiocyanates (allylisothiocyanate - AITC, benzylisothiocyanate - BITC and 2-phenylethylisothiocyanate - PEITC) and six phenolic products (gallic acid - GA, ferulic acid - FA, caffeic acid - CA, phloridzin - PHL, (-) epicatechin - EPI and oleuropein glucoside - OG) were tested. A disc diffusion assay based on pigment inhibition in Chromobacterium violaceum CV12472 was performed. In addition, the mechanisms of QS inhibition (QSI) based on the modulation of N-acyl homoserine lactone (AHLs) activity and synthesis by the phytochemicals were investigated. The cytotoxicity of each product was tested on a cell line of mouse lung fibroblasts. AITC, BITC and PEITC demonstrated a capacity for QSI by modulation of AHL activity and synthesis, interfering the with QS systems of C. violaceum CviI/CviR homologs of LuxI/LuxR systems. The cytotoxic assays demonstrated low effects on the metabolic viability of the fibroblast cell line only for FA, PHL and EPI.
    Biofouling 12/2013; DOI:10.1080/08927014.2013.852542 · 3.70 Impact Factor