Article

Unique and atypical deletions in Prader-Willi syndrome reveal distinct phenotypes

Department of Psychiatry, University of Florida, Gainesville, FL, USA.
European journal of human genetics: EJHG (Impact Factor: 4.23). 11/2011; 20(3):283-90. DOI: 10.1038/ejhg.2011.187
Source: PubMed

ABSTRACT Prader-Willi syndrome (PWS) is a multisystem, contiguous gene disorder caused by an absence of paternally expressed genes within the 15q11.2-q13 region via one of the three main genetic mechanisms: deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. The deletion class is typically subdivided into Type 1 and Type 2 based on their proximal breakpoints (BP1-BP3 and BP2-BP3, respectively). Despite PWS being a well-characterized genetic disorder the role of the specific genes contributing to various aspects of the phenotype are not well understood. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is a recently developed technique that detects copy number changes and aberrant DNA methylation. In this study, we initially applied MS-MLPA to elucidate the deletion subtypes of 88 subjects. In our cohort, 32 had a Type 1 and 49 had a Type 2 deletion. The remaining seven subjects had unique or atypical deletions that were either smaller (n=5) or larger (n=2) than typically described and were further characterized by array-based comparative genome hybridization. In two subjects both the PWS region (15q11.2) and the newly described 15q13.3 microdeletion syndrome region were deleted. The subjects with a unique or an atypical deletion revealed distinct phenotypic features. In conclusion, unique or atypical deletions were found in ∼8% of the deletion subjects with PWS in our cohort. These novel deletions provide further insight into the potential role of several of the genes within the 15q11.2 and the 15q13.3 regions.

Download full-text

Full-text

Available from: Trilochan Sahoo, Aug 23, 2015
2 Followers
 · 
169 Views
  • Source
    • "The smallest was 2.46 Mb and stretched from BP2 to ATP10A. This patient had an atypical presentation with tall stature, macrocephaly and large hands and feet [Kim et al., 2012]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic analyses were performed in a male patient with suspected Prader-Willi syndrome who presented with hypogonadism, excessive eating, central obesity, small hands and feet and cognition within the low normal range. However, he had no neonatal hypotonia or feeding problems during infancy. Chromosome analysis showed a normal male karyotype. Further analysis with array-CGH identified a mosaic 847 kb deletion in 15q11-q13, including SNURF-SNRPN, the snoRNA gene clusters SNORD116 (HBII-85), SNORD115, (HBII-52), SNORD109 A and B (HBII-438A and B), SNORD64 (HBII-13), and NPAP1 (C15ORF2). MLPA confirmed the deletion and the results were compatible with a paternal origin. Metaphase-FISH verified the mosaicism with the deletion present in 58% of leukocytes analyzed. Three smaller deletions in this region have previously been reported in patients with Prader-Willi syndrome phenotype. All three deletions included SNORD116, but only two encompassed parts of SNURF-SNRPN, implicating SNORD116 as the major contributor to the Prader-Willi phenotype. Our case adds further information about genotype-phenotype correlation and supports the hypothesis that SNORD116 plays a major role in the pathogenesis of Prader-Willi syndrome. Furthermore, it examplifies diagnostic difficulties in atypical cases and illustrates the need for additional testing methods when Prader-Willi syndrome is suspected. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 02/2014; 164(2). DOI:10.1002/ajmg.a.36307 · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prader-Willi syndrome is a neurodevelopmental disorder resulting from the absence of expression of paternally expressed gene(s) in a highly imprinted region of chromosome 15q11-13. The physical phenotype includes evidence of growth retardation due to relative growth hormone deficiency, small hands and feet, a failure of normal secondary sexual development, and a facial appearance including narrow bifrontal diameter, almond-shaped palpebral fissures, narrow nasal root, and thin upper vermilion with downturned corners of the mouth. Anecdotally, the face of individuals with PWS receiving hGH treatment is said to "normalize." We used dense surface modelling and shape signature techniques to analyze 3D photogrammetric images of the faces of 72 affected and 388 unaffected individuals. We confirmed that adults with Prader-Willi syndrome who had never received human growth supplementation displayed known characteristic facial features. Facial growth was significantly reduced in these adults, especially in males. We demonstrated that following human growth hormone (hGH) supplementation, vertical facial growth of affected individuals falls within the normal range. However, lateral and periorbital face shape and nose shape differences in affected children who have received hGH therapy remain sufficiently strong to be significantly discriminating in comparisons with age-sex matched, unaffected individuals. Finally, we produced evidence that age at initiation and length of treatment with hGH do not appear to play a role in normalization or in consistent alteration of the face shape of affected individuals. This is the first study to provide objective shape analysis of craniofacial effects of hGH therapy in Prader-Willi syndrome. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 07/2013; 161(10). DOI:10.1002/ajmg.a.36100 · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe an 11 month old female with Prader-Willi syndrome (PWS) resulting from an atypically large deletion of proximal 15q due to a de novo 3;15 unbalanced translocation. The 10.6 megabase deletion extends from the chromosome 15 short arm and is not situated in a region previously reported as a common distal breakpoint for unbalanced translocations. There was no deletion of the reciprocal chromosome 3q subtelomeric region detected by either chromosomal microarray or FISH. The patient has hypotonia, failure to thrive, and typical dysmorphic facial features for PWS. The patient also has profound global developmental delay consistent with an expanded, more severe, phenotype.
    European journal of medical genetics 07/2013; 56(9). DOI:10.1016/j.ejmg.2013.05.010 · 1.49 Impact Factor
Show more