Mutation screening of patients with Alzheimer disease identifies APP locus duplication in a Swedish patient

Genetics Unit, Dept of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden. .
BMC Research Notes 11/2011; 4(1):476. DOI: 10.1186/1756-0500-4-476
Source: PubMed


Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus.
We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease.
In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb.
This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.

Download full-text


Available from: Caroline Graff, Oct 01, 2015
11 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuritic plaques (main constituent: β-amyloid [Aβ]) and neurofibrillary tangles (hyperphosphorylated tau protein) in the brain. Abnormalities in Aβ and tau can be measured upon neuropathological examination, in cerebrospinal fluid or by PET. Etiologically, a growing body of evidence suggests that susceptibility to AD is genetically controlled. However, the precise nature of the underlying risk genes and their relation to AD biomarkers remains largely elusive. To this end, we performed a qualitative review of 17 studies (covering 47 polymorphisms in 26 genes) and investigated the potential relation between the most compelling AD risk genes and markers for Aβ and tau in cerebrospinal fluid, PET imaging and neuropathological examination. Of all covered genes, only APOE and PICALM showed consistent effects on Aβ but not on tau, while no obvious effects were observed for CLU, CR1, ACE, SORL and MAPT.
    Biomarkers in Medicine 08/2012; 6(4):477-95. DOI:10.2217/bmm.12.56 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and the most common form of dementia in the elderly. It is a complex disorder with environmental and genetic components. There are two major types of AD, early onset and the more common late onset. The genetics of early-onset AD are largely understood with mutations in three different genes leading to the disease. In contrast, while susceptibility loci and alleles associated with late-onset AD have been identified using genetic association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset AD, the clinical features of EOAD according to genotypes, and the clinical implications of the genetics of AD.
    BioMed Research International 05/2014; 2014:291862. DOI:10.1155/2014/291862 · 3.17 Impact Factor