Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays.

Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
PLoS ONE (Impact Factor: 3.73). 01/2011; 6(10):e26162. DOI: 10.1371/journal.pone.0026162
Source: PubMed

ABSTRACT Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, "meiosis" and "pollen wall synthesis". The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 hours of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrate that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations were validated by in situ hybridization. Surprisingly, germinal initials starting five days of mitotic divisions were significantly enriched in >100 transcripts classified in meiotic processes including recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS). This article is protected by copyright. All rights reserved.
    The Plant Journal 01/2014; · 6.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Promoters can direct gene expression specifically to targeted tissues or cells. Effective with both crop species and model plant systems, these tools can help researchers overcome the practical obstacles associated with transgenic protocols. Here, we identified promoters that allow one to target the manipulation of gene expression during pollen development. Utilizing published transcriptomic databases for rice, we investigated the promoter activity of selected genes in Arabidopsis. From various microarray datasets, including those for anthers and pollen grains at different developmental stages, we selected nine candidate genes that showed high levels of expression in the late stages of rice pollen development. We named these Oryza sativa late pollen-specific genes. Their promoter regions contained various cis-acting elements that could be responsible for anther-/pollen-specific expression. Promoter::GUS-GFP reporters were constructed and introduced into Arabidopsis plants. Histochemical GUS staining revealed that six of the nine rice promoters conferred strong GUS expression that was restricted to the anthers in Arabidopsis. Further analysis showed that although the GUS signals were not detected at the unicellular stage, they strengthened in the bicellular or tricellular stages, peaking at the mature pollen stage. This paralleled their transcriptomic profiles in rice. Based on our results, we proposed that these six rice promoters, which are active in the late stages of pollen formation in the dicot Arabidopsis, can aid molecular breeders in generating new varieties of a monocot plant, rice.
    Plant reproduction. 02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyamine oxidase (PAO), which requires flavin adenine dinucleotide as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3 diaminopropane (DAP), H2O2, and the respective aldehydes, while the back-conversion (BC) reaction produces spermidine (Spd) from tetraamines, spermine (Spm) and thermospermine (T-Spm), and/or putrescine from Spd, along with 3-aminopropanal and H2O2. The Oryza sativa genome contains seven PAO-encoded genes termed OsPAO1 to OsPAO7. To date, we have characterized four OsPAOs. The products of these genes, i.e., OsPAO1, OsPAO3, OsPAO4, and OsPAO5, catalyze BC-type reactions. Whereas OsPAO1 remains in the cytoplasm, the other three PAOs localize to peroxisomes. Here, we examined OsPAO7 and its gene product. OsPAO7 shows high identity to maize ZmPAO1, the best characterized plant PAO having TC-type activity. OsPAO7 seems to remain in a peripheral layer of the plant cell with the aid of its predicted signal peptide and transmembrane domain. Recombinant OsPAO7 prefers Spm and Spd as substrates, and it produces DAP from both substrates in a time-dependent manner, indicating that OsPAO7 is the first TC-type enzyme identified in O. sativa. The results clearly show that two types of PAOs co-exist in O. sativa. Furthermore, OsPAO7 is specifically expressed in anthers, with an expressional peak at the bicellular pollen stage. The physiological function of OsPAO7 in anthers is discussed.
    Plant and Cell Physiology 03/2014; · 4.13 Impact Factor

Full-text (3 Sources)

Available from
May 23, 2014