Article

Ongoing physiological processes in the cerebral cortex

Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, 49 Convent Dr. 1E-21, MSC 4400, Bethesda, MD 20892, USA.
NeuroImage (Impact Factor: 6.13). 10/2011; 62(4):2190-200. DOI: 10.1016/j.neuroimage.2011.10.059
Source: PubMed

ABSTRACT Functional magnetic resonance imaging (fMRI) has revealed that the human brain undergoes prominent, regional hemodynamic fluctuations when a subject is at rest. These ongoing fluctuations exhibit distinct patterns of spatiotemporal synchronization that have been dubbed "resting state functional connectivity", and which currently serve as a principal tool to investigate neural networks in the normal and pathological human brain. Despite the wide application of this approach in human neuroscience, the neural mechanisms that give rise to spontaneous fMRI correlations are largely unknown. Here we review results of recent electrophysiological studies in the cerebral cortex of humans and nonhuman primates that link neural activity to ongoing fMRI fluctuations. We begin by describing results obtained with simultaneous fMRI and electrophysiological measurements that allow for the identification of direct neural correlates of resting state functional connectivity. We next highlight experiments that investigate the correlational structure of spontaneous neural signals, including the spatial variation of signal coherence over the cortical surface, across cortical laminae, and between the two hemispheres. In the final section we speculate on the origins and potential consequences of ongoing signals for normal brain function, and point out inherent limitations of the fMRI correlation approach.

Full-text

Available from: Alexander Maier, Feb 24, 2014
0 Followers
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. J. Magn. Reson. Imaging 2015. © 2015 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 02/2015; DOI:10.1002/jmri.24786 · 2.79 Impact Factor
  • Source
    The Wiley Handbook on the Cognitive Neuroscience of Addiction, Edited by Stephen J. Wilson, 01/2015: chapter 20: pages 472-502; Wiley Blackwell., ISBN: 9781118472248
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work we present a new open source software package offering a unified framework for the real-time adaptation of fMRI stimulation procedures. The software provides a straightforward setup and highly flexible approach to adapt fMRI paradigms while the experiment is running. The general framework comprises the inclusion of parameters from sub-ject's compliance, such as directing gaze to visually presented stimuli and physiological fluctuations, like blood pressure or pulse. Additionally, this approach yields possibilities to investigate complex scientific questions, for example the influence of EEG rhythms or fMRI signals results themselves. To prove the concept of this approach, we used our software in a usability example for an fMRI experiment where the presentation of emotional pictures was dependent on the subject's gaze position. This can have a significant impact on the results. So far, if this is taken into account during fMRI data analysis, it is commonly done by the post-hoc removal of erroneous trials. Here, we propose an a priori adaptation of the paradigm during the experiment's runtime. Our fMRI findings clearly show the benefits of an adapted paradigm in terms of statistical power and higher effect sizes in emotion-related brain regions. This can be of special interest for all experiments with low statistical power due to a limited number of subjects, a limited amount of time, costs or available data to analyze , as is the case with real-time fMRI.
    PLoS ONE 04/2015; 10(3):e0118890. DOI:10.1371/journal.pone.0118890 · 3.53 Impact Factor