Article

Ongoing physiological processes in the cerebral cortex.

Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, 49 Convent Dr. 1E-21, MSC 4400, Bethesda, MD 20892, USA.
NeuroImage (Impact Factor: 6.25). 10/2011; 62(4):2190-200. DOI: 10.1016/j.neuroimage.2011.10.059
Source: PubMed

ABSTRACT Functional magnetic resonance imaging (fMRI) has revealed that the human brain undergoes prominent, regional hemodynamic fluctuations when a subject is at rest. These ongoing fluctuations exhibit distinct patterns of spatiotemporal synchronization that have been dubbed "resting state functional connectivity", and which currently serve as a principal tool to investigate neural networks in the normal and pathological human brain. Despite the wide application of this approach in human neuroscience, the neural mechanisms that give rise to spontaneous fMRI correlations are largely unknown. Here we review results of recent electrophysiological studies in the cerebral cortex of humans and nonhuman primates that link neural activity to ongoing fMRI fluctuations. We begin by describing results obtained with simultaneous fMRI and electrophysiological measurements that allow for the identification of direct neural correlates of resting state functional connectivity. We next highlight experiments that investigate the correlational structure of spontaneous neural signals, including the spatial variation of signal coherence over the cortical surface, across cortical laminae, and between the two hemispheres. In the final section we speculate on the origins and potential consequences of ongoing signals for normal brain function, and point out inherent limitations of the fMRI correlation approach.

0 Bookmarks
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BOLD functional MRI (fMRI) data are dominated by low frequency signals, many of them of unclear origin. We have recently shown that some portions of the low frequency oscillations found in BOLD fMRI are systemic signals closely related to the blood circulation (Tong et al. [2013]: NeuroImage 76:202-215). They are commonly treated as physiological noise in fMRI studies. In this study, we propose and test a novel data-driven analytical method that uses these systemic low frequency oscillations in the BOLD signal as a tracer to follow cerebral blood flow dynamically. Our findings demonstrate that: (1) systemic oscillations pervade the BOLD signal; (2) the temporal traces evolve as the blood propagates though the brain; and, (3) they can be effectively extracted via a recursive procedure and used to derive the cerebral circulation map. Moreover, this method is independent from functional analyses, and thus allows simultaneous and independent assessment of information about cerebral blood flow to be conducted in parallel with the functional studies. In this study, the method was applied to data from the resting state scans, acquired using a multiband EPI sequence (fMRI scan with much shorter TRs), of seven healthy participants. Dynamic maps with consistent features resembling cerebral blood circulation were derived, confirming the robustness and repeatability of the method. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 06/2014; · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.
    Neuroreport 06/2014; · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite their widespread use, the effect of anesthetic agents on the brain's functional architecture remains poorly understood. This is particularly true of alterations that occur beyond the point of induced unconsciousness. Here, we examined the distributed intrinsic connectivity of macaques across six isoflurane levels using resting-state functional MRI (fMRI) following the loss of consciousness. The results from multiple analysis strategies showed stable functional connectivity (FC) patterns between 1.00% and 1.50% suggesting this as a suitable range for anesthetized nonhuman primate resting-state investigations. Dose-dependent effects were evident at moderate to high dosages showing substantial alteration of the functional topology and a decrease or complete loss of interhemispheric cortical FC strength including that of contralateral homologues. The assessment of dynamic FC patterns revealed that the functional repertoire of brain states is related to anesthesia depth and most strikingly, that the number of state transitions linearly decreases with increased isoflurane dosage. Taken together, the results indicate dose-specific spatial and temporal alterations of FC that occur beyond the typically defined endpoint of consciousness. Future work will be necessary to determine how these findings generalize across anesthetic types and extend to the transition between consciousness and unconsciousness. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 07/2014; · 6.88 Impact Factor

Full-text

Download
19 Downloads
Available from
May 28, 2014

Alexander Maier