-Tocotrienol Protects against Mitochondrial Dysfunction and Renal Cell Death

Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham St., MS 522-3, Little Rock, AR 72205, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.97). 02/2012; 340(2):330-8. DOI: 10.1124/jpet.111.186882
Source: PubMed


Oxidative stress is a major mechanism of a variety of renal diseases. Tocopherols and tocotrienols are well known antioxidants. This study aimed to determine whether γ-tocotrienol (GT3) protects against mitochondrial dysfunction and renal proximal tubular cell (RPTC) injury caused by oxidants. Primary cultures of RPTCs were injured by using tert-butyl hydroperoxide (TBHP) in the absence and presence of GT3 or α-tocopherol (AT). Reactive oxygen species (ROS) production increased 300% in TBHP-injured RPTCs. State 3 respiration, oligomycin-sensitive respiration, and respiratory control ratio (RCR) decreased 50, 63, and 47%, respectively. The number of RPTCs with polarized mitochondria decreased 54%. F₀F₁-ATPase activity and ATP content decreased 31 and 65%, respectively. Cell lysis increased from 3% in controls to 26 and 52% at 4 and 24 h, respectively, after TBHP exposure. GT3 blocked ROS production, ameliorated decreases in state 3 and oligomycin-sensitive respirations and F₀F₁-ATPase activity, and maintained RCR and mitochondrial membrane potential (ΔΨ(m)) in injured RPTCs. GT3 maintained ATP content, blocked RPTC lysis at 4 h, and reduced it to 13% at 24 h after injury. Treatment with equivalent concentrations of AT did not block ROS production and cell lysis and moderately improved mitochondrial respiration and coupling. This is the first report demonstrating the protective effects of GT3 against RPTC injury by: 1) decreasing production of ROS, 2) improving mitochondrial respiration, coupling, ΔΨ(m), and F₀F₁-ATPase function, 3) maintaining ATP levels, and 4) preventing RPTC lysis. Our data suggest that GT3 is superior to AT in protecting RPTCs against oxidant injury and may prove therapeutically valuable for preventing renal injury associated with oxidative stress.

Download full-text


Available from: Cesar M Compadre,
38 Reads
  • Source
    • "Studies have shown that VE can interrupt the radical chain reaction, prevent free radicals into the cell membrane, and maintain the stability of cell membranes [6]. VE inhibits the generation of mitochondrial ROS, through increasing the mitochondrial membrane potential and improving mitochondrial function [7]. Meanwhile, it can protect polyunsaturated fatty acids in the cell membrane, and inhibit lipid peroxidation [8]. "
    International Journal of Clinical Medicine 01/2014; 05(03):87-92. DOI:10.4236/ijcm.2014.53016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Docosahexaenoic acid (DHA) has been shown to exhibit anticancer actions in vitro and in vivo in a variety of cancers. Here, we investigated the role for DHA in inducing apoptosis in triple-negative breast cancer (TNBC) and studied the mechanisms of action. DHA induces apoptosis as detected by Annexin V-FITC/PI assay as well as induces cleavage of caspase-8 and -9, endoplasmic reticulum stress (ERS), and elevated levels of death receptor-5 (DR5) protein expression as detected by western blot assays. Chemical inhibitors of caspase-8 and -9 and small interfering RNAs (siRNAs) show DHA to induce ERS/CHOP/DR5-mediated caspase-8 and -9 dependent apoptosis. Furthermore, DHA induces elevated cellular levels of reactive oxygen species (ROS) and antioxidant; RRR-α-tocopherol (αT) blocked DHA-induced apoptotic events. In contrast to the antagonistic impact of αT, gamma-tocotrienol (γT3) was demonstrated to cooperate with DHA in inducing apoptotic events in TNBC cells. Data, for the first time, demonstrate that DHA induces apoptosis in TNBC cells via activation of ERS/CHOP/DR5-mediated caspase-8 and -9 dependent pro-apoptotic events, and that different forms of vitamin E exhibit distinct effects on DHA-induced apoptosis; namely, inhibition by αT and enhancement by γT3.
    Molecular Nutrition & Food Research 06/2012; 56(6):923-34. DOI:10.1002/mnfr.201200027 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrated that nonselective PKC activation promotes mitochondrial function in renal proximal tubular cells (RPTC) following toxicant injury. However, the specific PKC isozyme mediating this effect is unknown. This study investigated the role of PKC-α in the recovery of mitochondrial functions in oxidant-injured RPTC. Wild-type PKC-α (wtPKC-α) and inactive PKC-α mutants were overexpressed in RPTC to selectively increase or block PKC-α activation. Oxidant (tert-butyl hydroperoxidel; TBHP) exposure activated PKC-α in RPTC but decreased PKC-α levels in mitochondria following treatment. Uncoupled and state 3 respirations and activities of complexes I and IV in TBHP-injured cells decreased to 55, 44, 49, and 65% of controls, respectively. F(0)F(1)-ATPase activity and ATP content in injured RPTC decreased to 59 and 60% of controls, respectively. Oxidant exposure increased reactive oxygen species (ROS) production by 210% and induced mitochondrial fragmentation and 52% RPTC lysis. Overexpressing wtPKC-α did not block TBHP-induced ROS production but improved respiration and complex I activity, restored complex IV and F(0)F(1)-ATPase activities, promoted recovery of ATP content, blocked mitochondrial fragmentation, and reduced RPTC lysis to 14%. In contrast, inhibiting PKC-α 1) induced mitochondrial hyperpolarization and fragmentation; 2) blocked increases in ROS production; 3) prevented recovery of respiratory complexes and F(0)F(1)-ATPase activities, respiration, and ATP content; and 4) exacerbated TBHP-induced RPTC lysis. We conclude that 1) activation of PKC-α prevents mitochondrial hyperpolarization and fragmentation, decreases cell death, and promotes recovery of mitochondrial respiration and ATP content following oxidant injury in RPTC; and 2) respiratory complexes I and IV and F(0)F(1)-ATPase are targets of active PKC-α.
    AJP Renal Physiology 06/2012; 303(4):F515-26. DOI:10.1152/ajprenal.00072.2012 · 3.25 Impact Factor
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.