Article

Identifying polyglutamine protein species in situ that best predict neurodegeneration.

Gladstone Institute of Neurological Disease, San Francisco, California, USA.
Nature Chemical Biology (Impact Factor: 13.22). 12/2011; 7(12):925-34. DOI: 10.1038/nchembio.694
Source: PubMed

ABSTRACT Polyglutamine (polyQ) stretches exceeding a threshold length confer a toxic function to proteins that contain them and cause at least nine neurological disorders. The basis for this toxicity threshold is unclear. Although polyQ expansions render proteins prone to aggregate into inclusion bodies, this may be a neuronal coping response to more toxic forms of polyQ. The exact structure of these more toxic forms is unknown. Here we show that the monoclonal antibody 3B5H10 recognizes a species of polyQ protein in situ that strongly predicts neuronal death. The epitope selectively appears among some of the many low-molecular-weight conformational states assumed by expanded polyQ and disappears in higher-molecular-weight aggregated forms, such as inclusion bodies. These results suggest that protein monomers and possibly small oligomers containing expanded polyQ stretches can adopt a conformation that is recognized by 3B5H10 and is toxic or closely related to a toxic species.

0 Followers
 · 
204 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein conformation diseases, including polyglutamine diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease is one of nine diseases caused by an expanded polyglutamine repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated huntingtin such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated huntingtin fragments offers an important possibility to understand huntingtin degradation and aggregation processes within the cell. For the identification of aggregated huntingtin and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant huntingtin. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.
    Frontiers in Molecular Neuroscience 01/2015; 8(1). DOI:10.3389/fnmol.2015.00001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Huntington's disease (HD) is caused by a polyglutamine (polyQ) domain that is expanded beyond a critical threshold near the N-terminus of the huntingtin (htt) protein, directly leading to htt aggregation. While full-length htt is a large (on the order of ∼350 kDa) protein, it is proteolyzed into a variety of N-terminal fragments that accumulate in oligomers, fibrils, and larger aggregates. It is clear that polyQ length is a key determinant of htt aggregation and toxicity. However, the flanking sequences around the polyQ domain, such as the first 17 amino acids on the N terminus (Nt17), influence aggregation, aggregate stability, influence other important biochemical properties of the protein and ultimately its role in pathogenesis. Here, we review the impact of Nt17 on htt aggregation mechanisms and kinetics, structural properties of Nt17 in both monomeric and aggregate forms, the potential role of posttranslational modifications (PTMs) that occur in Nt17 in HD, and the function of Nt17 as a membrane targeting domain.
    Biomolecular concepts 03/2015; 6(1):33-46. DOI:10.1515/bmc-2015-0001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.
    03/2015; 47(3):e147. DOI:10.1038/emm.2014.117

Full-text (2 Sources)

Download
55 Downloads
Available from
May 19, 2014