Article

Distribution and surfactant association of carcinoembryonic cell adhesion molecule 6 in human lung

Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.04). 01/2012; 302(2):L216-25. DOI: 10.1152/ajplung.00055.2011
Source: PubMed

ABSTRACT Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycophosphatidylinositol-anchored protein expressed in epithelial cells of various primate tissues. It binds gram-negative bacteria and is overexpressed in human cancers. CEACAM6 is associated with lamellar bodies of cultured type II cells of human fetal lung and protects surfactant function in vitro. In this study, we characterized CEACAM6 expression in vivo in human lung. CEACAM6 was present in lung lavage of premature infants at birth and increased progressively in intubated infants with lung disease. Of surfactant-associated CEACAM6, ∼80% was the fully glycosylated, 90-kDa form that contains the glycophosphatidylinositol anchor, and the concentration (3.9% of phospholipid for adult lung) was comparable to that for surfactant proteins (SP)-A/B/C. We examined the affinity of CEACAM6 by purification of surfactant on density gradient centrifugation; concentrations of CEACAM6 and SP-B per phospholipid were unchanged, whereas levels of total protein and SP-A decreased by 60%. CEACAM6 mRNA content decreased progressively from upper trachea to peripheral fetal lung, whereas protein levels were similar in all regions of adult lung, suggesting proximal-to-distal developmental expression in lung epithelium. In adult lung, most type I cells and ∼50% of type II cells were immunopositive. We conclude that CEACAM6 is expressed by alveolar and airway epithelial cells of human lung and is secreted into lung-lining fluid, where fully glycosylated protein binds to surfactant. Production appears to be upregulated during neonatal lung disease, perhaps related to roles of CEACAM6 in surfactant function, cell proliferation, and innate immune defense.

0 Followers
 · 
336 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used non-insulin producing pancreatic carcinoma cell line, MIA PaCa-2 and have modulated its culture conditions by using 1% matrigel as extracellular matrix, N2, B27 growth supplements and serum free conditions. Expression of markers was analyzed using qRT-PCR, immunofluorescence and in vitro functional assay for insulin and C-peptide release was assessed using insulin and C-peptide ELISA respectively. The cells grown under this altered culture conditions have exhibited a transition in the morphology from mesenchymal to epithelial with extensive piling up of cells. A reduction in doubling time from 40 hours to 18 hours, upregulation of beta islet specific markers like pancreatic duodenal homeobox-1 (Pdx-1), C-peptide, insulin and disappearance of markers like vimentin were observed. On the functional level, the altered morphology bearing cells released high levels of insulin in response to 10µM tolbutamide (an activator of insulin pathway) and reduced insulin secretion in response to 50µM nifedipine (inhibitor of the pathway). On the contrary, the original cells (mesenchymal morphology) had failed to release any insulin in response to varying concentrations of glucose and also the activators and inhibitors of the insulin pathway. This investigation thus provides a basis for using this basic developmental biology phenomenon mesenchymal to epithelial transition as a strategy to generate a large number of functional islets from stem cells of mesenchymal origin. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 02/2013; DOI:10.1002/jcb.24506 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiating malignant from nonmalignant biliary stenoses is challenging. This could be facilitated by the measurement of cancer biomarkers in bile. We aimed at (i) identifying new cancer biomarkers by comparative proteomic analysis of bile collected from patients with a malignant or benign biliary stenosis (exploratory phase) and (ii) verifying the accuracy of the newly identified potential biomarkers for discriminating malignant versus nonmalignant biliary stenoses in a larger group of patients (confirmation phase). Overall, 66 proteins were found overexpressed (ratio > 1.5) in at least one cancer condition using proteomic analysis and 7 proteins were increased in all malignant/nonmalignant diseases comparisons. Preliminary screening by immunoblot highlighted carcinoembryonic cell adhesion molecule 6 (CEAM6), a cell surface protein overexpressed in many human cancers, as an interesting candidate biomarker. ELISA subsequently confirmed CEAM6 as a potential bile biomarker for distinguishing malignant from benign biliary stenoses with a receiver operating characteristic (ROC) area under the curve (AUC) of 0.92 (specificity 83%, sensitivity 93%, positive predictive value 93%, and negative predictive value 83%). No significant difference in serum CEAM6 level was found between malignant and nonmalignant samples. Combining bile CEAM6 and serum CA19-9 in a panel further improved diagnostic accuracy for malignant stenoses (AUC 0.96, specificity 83%, sensitivity 97%, positive predictive value 93%, and negative predictive value 91%). CEAM6 measurement in bile could be clinically useful to discriminate between malignant and nonmalignant causes of biliary stricture. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
    Biochimica et Biophysica Acta 06/2013; 1844(5). DOI:10.1016/j.bbapap.2013.06.010 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carcinoembryonic antigen (CEA)-related cell adhesion molecules CEACAM1 (BGP, CD66a), CEACAM5 (CEA, CD66e) and CEACAM6 (NCA, CD66c) are expressed in human lung. They play a role in innate and adaptive immunity and are targets for various bacterial and viral adhesins. Two pathogens that colonize the normally sterile lower respiratory tract in patients with chronic obstructive pulmonary disease (COPD) are non-typable Haemophilus influenzae (NTHI) and Moraxella catarrhalis. Both pathogens bind to CEACAMs and elicit a variety of cellular reactions, including bacterial internalization, cell adhesion and apoptosis. To analyze the (co-) expression of CEACAM1, CEACAM5 and CEACAM6 in different lung tissues with respect to COPD, smoking status and granulocyte infiltration, immunohistochemically stained paraffin sections of 19 donors were studied. To address short-term effects of cigarette smoke and acute inflammation, transcriptional regulation of CEACAM5, CEACAM6 and different CEACAM1 isoforms by cigarette smoke extract, interferons, Toll-like receptor agonists, and bacteria was tested in normal human bronchial epithelial (NHBE) cells by quantitative PCR. Corresponding CEACAM protein levels were determined by flow cytometry. Immunohistochemical analysis of lung sections showed the most frequent and intense staining for CEACAM1, CEACAM5 and CEACAM6 in bronchial and alveolar epithelium, but revealed no significant differences in connection with COPD, smoking status and granulocyte infiltration. In NHBE cells, mRNA expression of CEACAM1 isoforms CEACAM1-4L, CEACAM1-4S, CEACAM1-3L and CEACAM1-3S were up-regulated by interferons alpha, beta and gamma, as well as the TLR3 agonist polyinosinic:polycytidylic acid (poly I:C). Interferon-gamma also increased CEACAM5 expression. These results were confirmed on protein level by FACS analysis. Importantly, also NTHI and M. catarrhalis increased CEACAM1 mRNA levels. This effect was independent of the ability to bind to CEACAM1. The expression of CEACAM6 was not affected by any treatment or bacterial infection. While we did not find a direct correlation between CEACAM1 expression and COPD, the COPD-associated bacteria NTHi and M. catarrhalis were able to increase the expression of their own receptor on host cells. Further, the data suggest a role for CEACAM1 and CEACAM5 in the phenomenon of increased host susceptibility to bacterial infection upon viral challenge in the human respiratory tract.
    Respiratory research 08/2013; 14(1):85. DOI:10.1186/1465-9921-14-85 · 3.38 Impact Factor