Article

Quantifying factors for the success of stratified medicine.

Massachusetts Institute of Technology, Sloan School of Management and Center for Biomedical Innovation, 100 Main Street, Cambridge, Massachusetts 02139, USA.
dressNature Reviews Drug Discovery (Impact Factor: 37.23). 11/2011; 10(11):817-33. DOI: 10.1038/nrd3557
Source: PubMed

ABSTRACT Co-developing a drug with a diagnostic to create a stratified medicine - a therapy that is targeted to a specific patient population on the basis of a clinical characteristic such as a biomarker that predicts treatment response - presents challenges for product developers, regulators, payers and physicians. With the aim of developing a shared framework and tools for addressing these challenges, here we present an analysis using data from case studies in oncology and Alzheimer's disease, coupled with integrated computational modelling of clinical outcomes and developer economic value, to quantify the effects of decisions related to key issues such as the design of clinical trials. This illustrates how such analyses can aid the coordination of diagnostic and drug development, and the selection of optimal development and commercialization strategies. It also illustrates the impact of the interplay of these factors on the economic feasibility of stratified medicine, which has important implications for public policy makers.

Full-text

Available from: Aiden A Flynn, Jan 22, 2015
2 Followers
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered. ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity.
    PLoS Medicine 02/2015; 12(2):e1001782. DOI:10.1371/journal.pmed.1001782 · 14.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Omics profiling significantly expanded the molecular landscape describing clinical phenotypes. Association analysis resulted in first diagnostic and prognostic biomarker signatures entering clinical utility. However, utilizing Omics for deepening our understanding of disease pathophysiology, and further including specific interference with drug mechanism of action on a molecular process level still sees limited added value in the clinical setting. We exemplify a computational workflow for expanding from statistics-based association analysis toward deriving molecular pathway and process models for characterizing phenotypes and drug mechanism of action. Interference analysis on the molecular model level allows identification of predictive biomarker candidates for testing drug response. We discuss this strategy on diabetic nephropathy (DN), a complex clinical phenotype triggered by diabetes and presenting with renal as well as cardiovascular endpoints. A molecular pathway map indicates involvement of multiple molecular mechanisms, and selected biomarker candidates reported as associated with disease progression are identified for specific molecular processes. Selective interference of drug mechanism of action and disease-associated processes is identified for drug classes in clinical use, in turn providing precision medicine hypotheses utilizing predictive biomarkers.
    Frontiers in Cell and Developmental Biology 08/2014; 2:37. DOI:10.3389/fcell.2014.00037
  • British Journal of Dermatology 04/2014; 170(4). DOI:10.1111/bjd.12984 · 4.10 Impact Factor

Similar Publications