Article

Treatment of knee cartilage defect in 2010

Service de chirurgie orthopédique, HIA Bégin, 69, avenue de Paris, 94160 Saint-Mandé, France.
Orthopaedics & Traumatology Surgery & Research (Impact Factor: 1.17). 12/2011; 97(8 Suppl):S140-53. DOI: 10.1016/j.otsr.2011.09.007
Source: PubMed

ABSTRACT Treatment of knee cartilage defect, a true challenge, should not only reconstruct hyaline cartilage on a long-term basis, but also be able to prevent osteoarthritis. Osteochondral knee lesions occur in either traumatic lesions or in osteochondritis dissecans (OCD). These lesions can involve all the articular surfaces of the knee in its three compartments. In principle, this review article covers symptomatic ICRS grade C or D lesions, depth III and IV, excluding management of superficial lesions, asymptomatic lesions that are often discovered unexpectedly, and kissing lesions, which arise prior to or during osteoarthritis. For clarity sake, the international classifications used are reviewed, for both functional assessment (ICRS and functional IKDC for osteochondral fractures, Hughston for osteochondritis) and morphological lesion evaluations (the ICRS macroscopic evaluation for fractures, the Bedouelle or SOFCOT for osteochondritis, and MOCART for MRI). The therapeutic armamentarium to treat these lesions is vast, but accessibility varies greatly depending on the country and the legislation in effect. Many comparative studies have been conducted, but they are rarely of high scientific quality; the center effect is nearly constant because patients are often referred to certain centers for an expert opinion. The indications defined herein use algorithms that take into account the size of the cartilage defect and the patient's functional needs for cases of fracture and the vitality, stability, and size of the fragment for cases of osteochondritis dissecans. Fractures measuring less than 2 cm(2) are treated with either microfracturing or mosaic osteochondral grafting, between 2 and 4 cm(2) with microfractures covered with a membrane or a culture of second- or third-generation chondrocytes, and beyond this size, giant lesions are subject to an exceptional allografting procedure, harvesting from the posterior condyle, or chondrocyte culture on a 3D matrix to restore volume. Cases of stable osteochondritis dissecans with closed articular cartilage can be simply monitored or treated with perforation in cases of questionable vitality. Cases of open joint cartilage are treated with a PLUS fixation if their vitality is preserved; if not, they are treated comparably to osteochondral fractures, with the type of filling depending on the defect size.

0 Followers
 · 
114 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patellofemoral chondral lesions are unique and difficult-to-treat entities often affecting a young and active patient population. Recent advances in our understanding of cartilage injuries, surgical techniques, and surgical technology have provided treatment options for symptomatic patients with lesions of the patellofemoral compartment. A number of surgical treatment options are available, including surgical microfracture, autologous or juvenile chondrocyte implantation, osteochondral autograft transfer, and osteochondral allograft implantation. Management decisions are based on a number of patient- and lesion-related factors in an effort to relieve pain, restore function, and preserve the patellofemoral articulation. The present article reviews the evaluation and management of cartilage injuries affecting the patellofemoral joint.
    Current Reviews in Musculoskeletal Medicine 02/2013; 6(2). DOI:10.1007/s12178-013-9157-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to evaluate trends in surgical treatment of articular cartilage defects of the knee in the United States. The current procedural terminology (CPT) billing codes of patients undergoing articular cartilage procedures of the knee were searched using the PearlDiver Patient Record Database, a national database of insurance billing records. The CPT codes for chondroplasty, microfracture, osteochondral autograft, osteochondral allograft, and autologous chondrocyte implantation (ACI) were searched. A total of 163,448 articular cartilage procedures of the knee were identified over a 6-year period. Microfracture and chondroplasty accounted for over 98 % of cases. There was no significant change in the incidence of cartilage procedures noted from 2004 (1.27 cases per 10,000 patients) to 2009 (1.53 cases per 10,000 patients) (p = 0.06). All procedures were performed more commonly in males (p < 0.001). This gender difference was smallest in patients undergoing chondroplasty (51 % males and 49 % females) and greatest for open osteochondral allograft (61 % males and 39 % females). Chondroplasty and microfracture were most commonly performed in patients aged 40-59, while all other procedures were performed most frequently in patients <40 years old (p < 0.001). Articular cartilage lesions of the knee are most commonly treated with microfracture or chondroplasty in the United States. Chondroplasty and microfracture were most often performed in middle-aged patients, whereas osteochondral autograft, allograft, and ACI were performed in younger patients, and more frequently in males. Cross-sectional study, Level IV.
    Knee Surgery Sports Traumatology Arthroscopy 07/2013; 22(9). DOI:10.1007/s00167-013-2614-9 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repairing articular cartilage is clinically challenging. We investigated a simple, effective and clinically feasible cell-based therapeutic approach using a poly(lactide-co-glycolide) (PLGA) scaffold seeded with autologous endothelial progenitor cells (EPC) to repair a full-thickness osteochondral defect in rabbits using a one-step surgery. EPC obtained by purifying a small amount of peripheral blood from rabbits were seeded into a highly porous, biocompatible PLGA scaffold, namely, EPC-PLGA, and implanted into the osteochondral defect in the medial femoral condyle. Twenty two rabbits were randomized into one of three groups: the empty defect group (ED), the PLGA-only group or the EPC-PLGA group. The defect sites were evaluated 4 and 12 weeks after implantation. At the end of testing, only the EPC-PLGA group showed the development of new cartilage tissue with a smooth, transparent and integrated articular surface. Moreover, histological analysis showed obvious differences in cartilage regeneration. At week 4, the EPC-PLGA group showed considerably higher TGF-β2 and TGF-β3 expression, a greater amount of synthesized glycosaminoglycan (GAG) content, and a higher degree of osteochondral angiogenesis in repaired tissues. At week 12, the EPC-PLGA group showed enhanced hyaline cartilage regeneration with a normal columnar chondrocyte arrangement, higher SOX9 expression, and greater GAG and collagen type II content. Moreover, the EPC-PLGA group showed organized osteochondral integration, the formation of vessel-rich tubercular bone and significantly higher bone volume per tissue volume and trabecular thickness. The present EPC-PLGA cell delivery system generates a suitable in situ microenvironment for osteochondral regeneration without the supplement of exogenous growth factors.
    Osteoarthritis and Cartilage 08/2013; 27(10). DOI:10.1016/j.joca.2013.07.016 · 4.66 Impact Factor