A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order

Respiratory Epidemiology and Public Health, Imperial College, London, United Kingdom.
The Journal of allergy and clinical immunology (Impact Factor: 11.48). 11/2011; 128(5):996-1005. DOI: 10.1016/j.jaci.2011.08.030
Source: PubMed


Hay fever or seasonal allergic rhinitis (AR) is a chronic disorder associated with IgE sensitization to grass. The underlying genetic variants have not been studied comprehensively. There is overwhelming evidence that those who have older siblings have less AR, although the mechanism for this remains unclear.
We sought to identify common genetic variant associations with prevalent AR and grass sensitization using existing genome-wide association study (GWAS) data and to determine whether genetic variants modify the protective effect of older siblings.
Approximately 2.2 million genotyped or imputed single nucleotide polymorphisms were investigated in 4 large European adult cohorts for AR (3,933 self-reported cases vs 8,965 control subjects) and grass sensitization (2,315 cases vs 10,032 control subjects).
Three loci reached genome-wide significance for either phenotype. The HLA variant rs7775228, which cis-regulates HLA-DRB4, was strongly associated with grass sensitization and weakly with AR (P(grass) = 1.6 × 10(-9); P(AR) = 8.0 × 10(-3)). Variants in a locus near chromosome 11 open reading frame 30 (C11orf30) and leucine-rich repeat containing 32 (LRRC32), which was previously associated with atopic dermatitis and eczema, were also strongly associated with both phenotypes (rs2155219; P(grass) = 9.4 × 10(-9); P(AR) = 3.8 × 10(-8)). The third genome-wide significant variant was rs17513503 (P(grass) = 1.2 × 10(-8); PAR = 7.4 × 10(-7)) which was located near transmembrane protein 232 (TMEM232) and solute carrier family 25, member 46 (SLC25A46). Twelve further loci with suggestive associations were also identified. Using a candidate gene approach, where we considered variants within 164 genes previously thought to be important, we found variants in 3 further genes that may be of interest: thymic stromal lymphopoietin (TSLP), Toll-like receptor 6 (TLR6) and nucleotide-binding oligomerization domain containing 1 (NOD1/CARD4). We found no evidence for variants that modified the effect of birth order on either phenotype.
This relatively large meta-analysis of GWASs identified few loci associated with AR and grass sensitization. No birth order interaction was identified in the current analyses.

14 Reads
  • Source
    • "near LAMA3 also had nominally significant associations in all three ethnic groups. Among the 17 loci previously identified by GWAS as associated with allergic rhinitis [4,9], four were associated with allergic rhinitis with P value ≤ 0.05 in our study (Additional file 8: Table S3). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Allergic rhinitis is a common disease whose genetic basis is incompletely explained. We report an integrated genomic analysis of allergic rhinitis. We performed genome wide association studies (GWAS) of allergic rhinitis in 5633 ethnically diverse North American subjects. Next, we profiled gene expression in disease-relevant tissue (peripheral blood CD4+ lymphocytes) collected from subjects who had been genotyped. We then integrated the GWAS and gene expression data using expression single nucleotide (eSNP), coexpression network, and pathway approaches to identify the biologic relevance of our GWAS. GWAS revealed ethnicity-specific findings, with 4 genome-wide significant loci among Latinos and 1 genome-wide significant locus in the GWAS meta-analysis across ethnic groups. To identify biologic context for these results, we constructed a coexpression network to define modules of genes with similar patterns of CD4+ gene expression (coexpression modules) that could serve as constructs of broader gene expression. 6 of the 22 GWAS loci with P-value ≤ 1x10−6 tagged one particular coexpression module (4.0-fold enrichment, P-value 0.0029), and this module also had the greatest enrichment (3.4-fold enrichment, P-value 2.6 × 10−24) for allergic rhinitis-associated eSNPs (genetic variants associated with both gene expression and allergic rhinitis). The integrated GWAS, coexpression network, and eSNP results therefore supported this coexpression module as an allergic rhinitis module. Pathway analysis revealed that the module was enriched for mitochondrial pathways (8.6-fold enrichment, P-value 4.5 × 10−72). Our results highlight mitochondrial pathways as a target for further investigation of allergic rhinitis mechanism and treatment. Our integrated approach can be applied to provide biologic context for GWAS of other diseases.
    BMC Medical Genomics 08/2014; 7(1):48. DOI:10.1186/1755-8794-7-48 · 2.87 Impact Factor
  • Source
    • "In that study, no associations were detected at a genome-wide significance level, and only two at a suggestive significance level. In addition, a genome-wide meta-analysis based on self-reported AR identified few genetic variants in spite of analyzing 2.2 million SNPs in close to 4000 AR cases and 9000 controls [6]. Only one locus reached genome-wide significance and six suggestive loci were identified. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Asthma genetics has been extensively studied and many genes have been associated with the development or severity of this disease. In contrast, the genetic basis of allergic rhinitis (AR) has not been evaluated as extensively. It is well known that asthma is closely related with AR since a large proportion of individuals with asthma also present symptoms of AR, and patients with AR have a 5–6 fold increased risk of developing asthma. Thus, the relevance of asthma candidate genes as predisposing factors for AR is worth investigating. The present study was designed to investigate if SNPs in highly replicated asthma genes are associated with the occurrence of AR. Methods A total of 192 SNPs from 21 asthma candidate genes reported to be associated with asthma in 6 or more unrelated studies were genotyped in a Swedish population with 246 AR patients and 431 controls. Genotypes for 429 SNPs from the same set of genes were also extracted from a Singapore Chinese genome-wide dataset which consisted of 456 AR cases and 486 controls. All SNPs were subsequently analyzed for association with AR and their influence on allergic sensitization to common allergens. Results A limited number of potential associations were observed and the overall pattern of P-values corresponds well to the expectations in the absence of an effect. However, in the tests of allele effects in the Chinese population the number of significant P-values exceeds the expectations. The strongest signals were found for SNPs in NPSR1 and CTLA4. In these genes, a total of nine SNPs showed P-values <0.001 with corresponding Q-values <0.05. In the NPSR1 gene some P-values were lower than the Bonferroni correction level. Reanalysis after elimination of all patients with asthmatic symptoms excluded asthma as a confounding factor in our results. Weaker indications were found for IL13 and GSTP1 with respect to sensitization to birch pollen in the Swedish population. Conclusions Genetic variation in the majority of the highly replicated asthma genes were not associated to AR in our populations which suggest that asthma and AR could have less in common than previously anticipated. However, NPSR1 and CTLA4 can be genetic links between AR and asthma and associations of polymorphisms in NPSR1 with AR have not been reported previously.
    BMC Medical Genetics 05/2013; 14(1):51. DOI:10.1186/1471-2350-14-51 · 2.08 Impact Factor
  • Source
    • "The RAD50 variants were further shown to be associated with increased risk of asthma and atopic eczema.89 Several loci (IL4R, FCER1A, IL13, STAT6, and HLA) with known functions in TH2 and allergic responses were associated with IgE levels in another recent GWA study.90 "
    [Show abstract] [Hide abstract]
    ABSTRACT: As complex common diseases, asthma and allergic diseases are caused by the interaction of multiple genetic variants with a variety of environmental factors. Candidate-gene studies have examined the involvement of a very large list of genes in asthma and allergy, demonstrating a role for more than 100 loci. These studies have elucidated several themes in the biology and pathogenesis of these diseases. A small number of genes have been associated with asthma or allergy through traditional linkage analyses. The publication of the first asthma-focused genome-wide association (GWA) study in 2007 has been followed by nearly 30 reports of GWA studies targeting asthma, allergy, or associated phenotypes and quantitative traits. GWA studies have confirmed several candidate genes and have identified new, unsuspected, and occasionally uncharacterized genes as asthma susceptibility loci. Issues of results replication persist, complicating interpretation and making conclusions difficult to draw, and much of the heritability of these diseases remains undiscovered. In the coming years studies of complex diseases like asthma and allergy will probably involve the use of high-throughput next-generation sequencing, which will bring a tremendous influx of new information as well as new problems in dealing with vast datasets.
    International Journal of General Medicine 04/2013; 6:253-65. DOI:10.2147/IJGM.S28156
Show more