Article

A Novel Strategy to Develop Therapeutic Approaches to Prevent Proliferative Vitreoretinopathy

Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA.
American Journal Of Pathology (Impact Factor: 4.6). 12/2011; 179(6):2931-40. DOI: 10.1016/j.ajpath.2011.08.043
Source: PubMed

ABSTRACT Proliferative vitreoretinopathy (PVR) thwarts the repair of rhegmatogenous retinal detachments. Currently, there is no effective prevention for PVR. Platelet-derived growth factor receptor α (PDGFRα) is associated with PVR in humans and strongly promotes experimental PVR driven by multiple vitreal growth factors outside the PDGF family. We sought to identify vitreal factors required for experimental PVR and to establish a potential approach to prevent PVR. Vitreous was obtained from normal rabbits or those in which PVR was either developing or stabilized. Normal vitreous contained substantial levels of growth factors and cytokines, which changed quantitatively and/or qualitatively as PVR progressed and stabilized. Neutralizing a subset of these agents in rabbit vitreous eliminated their ability to induce PVR-relevant signaling and cellular responses. A single intravitreal injection of neutralizing reagents for this subset prevented experimental PVR. To identify growth factors and cytokines likely driving PVR in humans, we subjected vitreous from patients with or without PVR to a similar series of analyses. This analysis accurately identified those agents required for vitreous-induced contraction of cells from a patient PVR membrane. We conclude that combination therapy encompassing a subset of vitreal growth factors and cytokines is a potential approach to prevent PVR.

0 Followers
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction. Proliferative vitreoretinopathy (PVR) is a severe inflammatory complication of retinal detachment. Pathological epiretinal membranes grow on the retina surface leading to contraction, and surgery fails in 5% to 10% of the cases. We evaluated the expression of VEGF-A, Otx1, Otx2, Otx3, and p53 family members from PVR specimens to correlate their role in inducing or preventing the pathology. Methods. Twelve retinal samples were taken from patients affected by PVR during therapeutic retinectomies in vitreoretinal surgery. Gene expression was evaluated using quantitative real-time reverse transcriptase PCR analysis and immunohistochemistry, using four healthy human retinae as control. Result. Controls showed basal expression of all genes. PVR samples showed little or no expression of Otx1 and variable expression of VEGF-A, Otx2, Otx3, p53, and p63 genes. Significant correlation was found among VEGF-A, Otx2, p53, and p63 and between Otx1 and Otx3. Conclusions. Otx homeobox, p53 family, and VEGF-A genes are expressed in PVR human retina. We individuated two possible pathways (VEGF-A, Otx2, p53, p63 and Otx1 and Otx3) involved in PVR progression that could influence in different manners the course of the pathology. Individuating the genetic pathways of PVR represents a novel approach to PVR therapies.
    Mediators of Inflammation 10/2013; 2013:857380. DOI:10.1155/2013/857380 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Certain platelet-derived growth factor (PDGF) isoforms are associated with proliferative vitreoretinopathy (PVR), a sight-threatening complication that develops in a subset of patients recovering from retinal reattachment surgery. Although these PDGF isoforms are abundant in the vitreous of patients and experimental animals with PVR, they make only a minor contribution to activating PDGF receptor α (PDGFRα) and driving experimental PVR. Rather, growth factors outside of the PDGF family are the primary (and indirect) agonists of PDGFRα. These observations beg the question of why vitreal PDGFs fail to activate PDGFRα. We report here that vitreous contains an inhibitor of PDGF-dependent activation of PDGFRα and that a major portion of this inhibitory activity is due to vascular endothelial cell growth factor A (VEGF-A). Furthermore, recombinant VEGF-A competitively blocks PDGF-dependent binding and activation of PDGFR, signaling events, and cellular responses. These findings unveil a previously unappreciated relationship between distant members of the PDGF/VEGF family that may contribute to pathogenesis of a blinding eye disease.
    Molecular and Cellular Biology 03/2012; 32(10):1955-66. DOI:10.1128/MCB.06668-11 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proliferative vitreoretinopathy (PVR) is a blinding disease associated with rhegmatogenous retinal detachment, for which there is no satisfactory treatment. Surgery helps in many cases, but, to our knowledge, there are no pharmacological approaches to reduce PVR risk. We report that suppressing expression of p53 was a required event in two assays of PVR (namely, platelet-derived growth factor receptor α-mediated contraction of cells in a collagen gel and retinal detachment in an animal model of PVR). Furthermore, preventing the decline in the level of p53 with agents such as Nutlin-3 protected from retinal detachment, which is the most vision-compromising component of PVR. Finally, Nutlin-3 may be effective in the clinical setting because it prevented human PVR vitreous-induced contraction of cells isolated from a patient PVR membrane. These studies identify Nutlin-3 as a potential PVR prophylaxis.
    American Journal Of Pathology 09/2012; 181(3):866-74. DOI:10.1016/j.ajpath.2012.05.036 · 4.60 Impact Factor

Preview

Download
0 Downloads
Available from