Article

Targeted therapy for BRAFV600E malignant astrocytoma.

University of California, San Francisco, San Francisco, CA 94158, USA.
Clinical Cancer Research (Impact Factor: 8.19). 12/2011; 17(24):7595-604. DOI: 10.1158/1078-0432.CCR-11-1456
Source: PubMed

ABSTRACT Malignant astrocytomas (MA) are aggressive central nervous system tumors with poor prognosis. Activating mutation of BRAF (BRAF(V600E)) has been reported in a subset of these tumors, especially in children. We have investigated the incidence of BRAF(V600E) in additional pediatric patient cohorts and examined the effects of BRAF blockade in preclinical models of BRAF(V600E) and wild-type BRAF MA.
BRAF(V600E) mutation status was examined in two pediatric MA patient cohorts. For functional studies, BRAF(V600E) MA cell lines were used to investigate the effects of BRAF shRNA knockdown in vitro, and to investigate BRAF pharmacologic inhibition in vitro and in vivo.
BRAF(V600E) mutations were identified in 11 and 10% of MAs from two distinct series of tumors (six of 58 cases total). BRAF was expressed in all MA cell lines examined, among which BRAF(V600E) was identified in four instances. Using the BRAF(V600E)-specific inhibitor PLX4720, pharmacologic blockade of BRAF revealed preferential antiproliferative activity against BRAF(V600E) mutant cells in vitro, in contrast to the use of shRNA-mediated knockdown of BRAF, which inhibited cell growth of glioma cell lines regardless of BRAF mutation status. Using orthotopic MA xenografts, we show that PLX4720 treatment decreases tumor growth and increases overall survival in mice-bearing BRAF(V600E) mutant xenografts, while being ineffective, and possibly tumor promoting, against xenografts with wild-type BRAF.
Our results indicate a 10% incidence of activating BRAF(V600E) among pediatric MAs. With regard to implications for therapy, our results support evaluation of BRAF(V600E)-specific inhibitors for treating BRAF(V600E) MA patients.

0 Followers
 · 
205 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-grade glioma (HGG) are optimally treated with maximum safe surgery, followed by radiotherapy (RT) and/or systemic chemotherapy (CT). Recently, the treatment of newly diagnosed anaplastic glioma (AG) has changed, particularly in patients with 1p19q codeleted tumors. Results of trials currenlty ongoing are likely to determine the best standard of care for patients with noncodeleted AG tumors. Trials in AG illustrate the importance of molecular characterization, which are germane to both prognosis and treatment. In contrast, efforts to improve the current standard of care of newly diagnosed glioblastoma (GB) with, for example, the addition of bevacizumab (BEV), have been largely disappointing and furthermore molecular characterization has not changed therapy except in elderly patients. Novel approaches, such as vaccine-based immunotherapy, for newly diagnosed GB are currently being pursued in multiple clinical trials. Recurrent disease, an event inevitable in nearly all patients with HGG, continues to be a challenge. Both recurrent GB and AG are managed in similar manner and when feasible re-resection is often suggested notwithstanding limited data to suggest benefit from repeat surgery. Occassional patients may be candidates for re-irradiation but again there is a paucity of data to commend this therapy and only a minority of selected patients are eligible for this approach. Consequently systemic therapy continues to be the most often utilized treatment in recurrent HGG. Choice of therapy, however, varies and revolves around re-challenge with temozolomide (TMZ), use of a nitrosourea (most often lomustine; CCNU) or BEV, the most frequently used angiogenic inhibitor. Nevertheless, no clear standard recommendation regarding the prefered agent or combination of agents is avaliable. Prognosis after progression of a HGG remains poor, with an unmet need to improve therapy.
    Surgical Neurology International 02/2015; 6(Suppl 1):S9-S44. DOI:10.4103/2152-7806.151331 · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The B-Raf proto-oncogene serine/threonine kinase (B-Raf) is a member of the Raf kinase family. The BRAF V600E mutation occurs frequently in certain brain tumors such as pleomorphic xanthoastrocytoma, ganglioglioma, and pilocytic astrocytoma, and less frequently in epithelioid and giant cell glioblastoma. BRAF V600E mutation in these cases has been canonically detected using Sanger sequencing or immunohistochemistry but not with next-generation sequencing (NGS). Moreover, to our knowledge, there is no detailed report of the BRAF V600E mutation in an adult glioblastoma with classical histologic features (c-GBM). Therefore, we performed NGS analysis to determine the mutational status of BRAF of 13 glioblastomas (GBMs) (11 primary and 2 secondary cases) and detected one tumor harboring the BRAF V600E mutation. We report here the detection of the BRAF V600E mutation in a patient with c-GBM and describe the patient's clinical course as well as the results of histopathological analysis.
    World Journal of Surgical Oncology 12/2015; 13(1):521. DOI:10.1186/s12957-015-0521-x · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitogen-activated protein kinase (MAPK) pathway is known to play a key role in the initiation and maintenance of many tumors as well as normal development. This often occurs through mutation of the genes encoding RAS and RAF proteins which are involved in signal transduction in this pathway. BRAF is one of three RAF kinases which act as downstream effectors of growth factor signaling leading to cell cycle progression, proliferation, and survival. Initially reported as a point mutation (V600E) in the majority of metastatic melanomas, other alterations in the BRAF gene have now been reported in a variety of human cancers including papillary thyroid cancer, colon carcinomas, hairy cell leukemia, and more recently in gliomas. The identification of oncogenic mutations in the BRAF gene have led to a revolution in the treatment of metastatic melanoma using targeted molecular therapies that affect the MAPK pathway either directly through BRAF inhibition or downstream through inhibition of MEK. This review describes the molecular biology of BRAF in the context of pediatric low-grade gliomas, the role of BRAF as a diagnostic marker, the prognostic implications of BRAF, and evidence for therapeutic targeting of BRAF.
    Frontiers in Oncology 03/2015; 5:54. DOI:10.3389/fonc.2015.00054

Full-text (2 Sources)

Download
33 Downloads
Available from
Jul 1, 2014