Article

Evidence for breast cancer as an integral part of Lynch syndrome.

Department of Obstetrics and Gynecology, Cantonal Hospital of Liestal, Liestal, Switzerland.
Genes Chromosomes and Cancer (Impact Factor: 3.84). 01/2012; 51(1):83-91. DOI: 10.1002/gcc.20935
Source: PubMed

ABSTRACT Lynch syndrome, an autosomal dominant cancer predisposition caused by mutations in DNA mismatch repair (MMR) genes, mainly mainly mutL homolog 1, OMIM 120436 (MLH1) and mutS homolog 2, OMIM 609309 (MSH2), encompasses a tumor spectrum including primarily gastrointestinal, endometrial, and ovarian cancer. This study aimed at clarifying the heavily debated issue of breast cancer being part of Lynch syndrome. Detailed clinical data on cancer occurrence in Swiss female MLH1/MSH2 mutation carriers were gathered, all available breast cancer specimens assessed for molecular evidence for MMR deficiency (i.e., microsatellite instability (MSI), MMR protein expression, and somatic (epi)genetic MMR gene alterations) and compiled with the scarce molecular data available from the literature. Seventy unrelated Swiss Lynch syndrome families were investigated comprising 632 female family members at risk of which 92 were genetically verified mutation carriers (52 MLH1 and 40 MSH2). On contrast to endometrial and ovarian cancer, which occurred significantly more often and at younger age in MLH1/MSH2 mutation carriers (median 50.5 and 49.0 years; P < 0.00001), overall cumulative breast cancer incidence closely mirrored the one in the Swiss population (56.5 years). Six (85.7%) of seven breast cancer specimens available for molecular investigations displayed the hallmarks of MMR deficiency. Combined with data from the literature, MSI was present in 26 (70.3%) of 37 and altered MMR protein expression in 16 (72.7%) of 22 breast cancer specimens from MLH1/MSH2 mutation carriers. These findings, thus, provide strong molecular evidence for a pivotal role of MMR deficiency in breast cancer development in Lynch syndrome.

0 Followers
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lynch syndrome (LS) is a tumor predisposing condition caused by constitutional defects in genes coding for components of the mismatch repair (MMR) apparatus. While hypermethylation of the promoter of the MMR gene MLH1 occurs in about 15% of colorectal cancer samples, it has also been observed as a constitutional alteration, in the absence of DNA sequence mutations, in a small number of LS patients. In order to obtain further insights on the phenotypic characteristics of MLH1 epimutation carriers, we investigated the somatic and constitutional MLH1 methylation status of 14 unrelated subjects with a suspicion of LS who were negative for MMR gene constitutional mutations and whose tumors did not express the MLH1 protein. A novel case of constitutional MLH1 epimutation was identified. This patient was affected with multiple primary tumors, including breast cancer, diagnosed starting from the age of 55 y. Investigation of her offspring by allele specific expression revealed that the epimutation was not stable across generations. We also found MLH1 hypermethylation in cancer samples from 4 additional patients who did not have evidence of constitutional defects. These patients had some characteristics of LS, namely early age at onset and/or positive family history, raising the possibility of genetic influences in the establishment of somatic MLH1 methylation.
    Epigenetics: official journal of the DNA Methylation Society 10/2014; 9(10):1431-8. DOI:10.4161/15592294.2014.970080 · 5.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.
    Frontiers in Genetics 08/2014; 5:287. DOI:10.3389/fgene.2014.00287
  • [Show abstract] [Hide abstract]
    ABSTRACT: Only 5% of breast cancers are explained by highly penetrant multisystem autosomal dominant hereditary disorders. Though another 20–30% has a familial presentation, the genetic and other etiologies are still not well understood. Genetic testing is now widely available and multiple professional societies have published guidelines for testing and management. Genetic testing trends include utilization of multi-gene panels that take advantage of next-generation sequencing as well as testing for low- and moderate-penetrance susceptibility genes. J. Surg. Oncol. © 2014 Wiley Periodicals, Inc.
    Journal of Surgical Oncology 01/2015; 111(1). DOI:10.1002/jso.23791 · 2.84 Impact Factor

Preview

Download
0 Downloads