Article

Heterogeneity of Large Cell Carcinoma of the Lung An Immunophenotypic and miRNA-Based Analysis

Unit of Surgical Pathology, Laboratory of Molecular Pathology, S. Chiara Hospital, Largo Medaglie Oro 9, Trento, Italy.
American Journal of Clinical Pathology (Impact Factor: 3.01). 11/2011; 136(5):773-82. DOI: 10.1309/AJCPYY79XAGRAYCJ
Source: PubMed

ABSTRACT Large cell carcinomas (LCCs) of the lung are heterogeneous and may be of different cell lineages. We analyzed 56 surgically resected lung tumors classified as LCC on the basis of pure morphologic grounds, using a panel of immunophenotypic markers (adenocarcinoma [ADC]-specific, thyroid transcription factor-1, cytokeratin 7, and napsin A; squamous cell carcinoma [SQCC]-specific, p63, cytokeratin 5, desmocollin 3, and Δnp63) and the quantitative analysis of microRNA-205 (microRNA sample score [mRSS]). Based on immunoprofiles 19 (34%) of the cases were reclassified as ADC and 14 (25%) as SQCC; 23 (41%) of the cases were unclassifiable. Of these 23 cases, 18 were classified as ADC and 5 as SQCC according to the mRSS. Our data show that an extended panel of immunohistochemical markers can reclassify around 60% of LCCs as ADC or SQCC. However, a relevant percentage of LCCs may escape convincing immunohistochemical classification, and mRSS could be used for further typing, but its clinical relevance needs further confirmation.

0 Followers
 · 
239 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent diagnostic procedure advances have considerably improved early lung cancer detection. However, the invasive, unpleasant, and inconvenient nature of current diagnostic procedures limits their application. There is a great need for novel noninvasive biomarkers for early lung cancer diagnosis. In the present study, we aimed to determine whether microRNA (miRNA) blood signatures are suitable for early detection of lung cancer. Using quantitative reverse transcriptase PCR analysis, we first selected and identified three aberrant plasma expression miRNAs (miR-21, miR-145, and miR-155) in a training set of 62 patients and 60 healthy smokers to define a panel that had high diagnostic efficiency for lung cancer. Then, we validated the detective ability of this miRNA panel in a testing set of 34 malignant tumor patients, 30 patients with benign pulmonary nodules and 32 healthy smokers. In the training set, miR-21 and miR-155 showed higher plasma expression levels, whereas miR-145 showed a lower expression level in patients with malignant cancer, compared with healthy controls (P≤0.001). The three miRNAs used in combination produced the area under receiver operating characteristic curve at 0.847, which helped distinguish lung cancer from healthy smokers with 69.4% sensitivity and 78.3% specificity. A logistic regression model with the best prediction was constructed on the basis of miR-21, miR-145, and miR-155. Validation of the miRNA panel in the testing set confirmed their diagnostic value, which yields a significant improvement over any single one. Plasma miR-21, miR-145, and miR-155 have strong potential as novel noninvasive biomarkers for early detection of lung cancer.
    European Journal of Cancer Prevention 11/2013; 22(6):540-548. DOI:10.1097/CEJ.0b013e32835f3be9 · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer mortality worldwide. Its high mortality is due to the poor prognosis of the disease caused by a late disease presentation, tumor heterogeneities within histological subtypes, and the relatively limited understanding of tumor biology. Importantly, lung cancer histological subgroups respond differently to some chemotherapeutic substances and side effects of some therapies appear to vary between subgroups. Biomarkers able to stratify for the subtype of lung cancer, prognosticate the course of disease, or predict the response to treatment are in high demand. In the last decade, microRNAs (miRNAs), measured in resected tumor samples or in fine needle aspirate samples have emerged as biomarkers for tumor diagnosis, prognosis and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole blood have increasingly been explored in the last five years as less invasive biomarkers for the early detection of cancers. In this review we cover the increasing amounts of data that have accumulated in the last ten years on the use of miRNAs as lung cancer biomarkers.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to analyze and summarize the clinicopathological characteristics of large-cell lung carcinoma (LCLC) of the lung, in order to improve the definite diagnosis rate of LCLC. Clinicopathological data of 174 patients with LCLC, confirmed pathologically, were retrospectively reviewed. The 174 cases of LCLC accounted for 5.7% of the total lung cancer cases during the corresponding time period at the Affiliated Cancer Hospital of Tianjin Medical University (Tianjin, China), among which there were 131 males and 43 females with an average age of 61.4 years. The postoperative pathological diagnosis of the 174 cases showed 80 cases of classic LCLC, 64 cases of large cell neuroendocrine carcinoma (LCNEC), six cases of combined LCNEC, 19 cases of basaloid carcinoma, three cases of clear cell carcinoma and two cases of lymphoepithelioma-like carcinoma. Of the total 174 LCLC cases, 96 patients exhibited lymph node metastasis. LCLC is a highly aggressive malignancy with a high tendency of invasion and metastasis, although the incidence rate is low. A definite diagnosis of LCLC primarily relies on the pathological diagnosis. Each subtype of LCLC has its own pathomorphological and immunohistochemical characteristics.
    Experimental and therapeutic medicine 01/2015; 9(1):197-202. DOI:10.3892/etm.2014.2075 · 0.94 Impact Factor

Full-text

Download
89 Downloads
Available from
May 28, 2014