Article

Generation of a set of conditional analog-sensitive alleles of essential protein kinases in the fission yeast Schizosaccharomyces pombe

Max F Perutz Laboratories, University of Vienna, Vienna, Austria.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.01). 10/2011; 10(20):3527-32. DOI: 10.4161/cc.10.20.17792
Source: PubMed

ABSTRACT The genome of the fission yeast Schizosaccharomyces pombe encodes for 17 protein kinases that are essential for viability. Studies of the essential kinases often require the use of mutant strains carrying conditional alleles. To inactivate these kinases conditionally, we applied a recently developed chemical genetic strategy. The mutation of a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors, allowing for specific inactivation of the modified kinase. Using this approach, we constructed conditional analog-sensitive alleles of 13 essential protein kinases in the fission yeast S. pombe.

Full-text

Available from: Eva Miadokova, Jun 12, 2015
0 Followers
 · 
177 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Schizosaccharomyces pombe, Eso1p is a protein fusion. Two-third of its N-Terminus is conserved to budding yeast Rad30, which functions in error-free replication of UV-damaged DNA. A third of the C-terminus is highly conserved to budding yeast Eco1, a lysine acetyltransferase, which is essential for the establishment of cohesion. Both Rad30p and Eco1p need to be finely tuned in budding yeast. Given the distinct function existed in Rad30p and Eco1p, it is enigmatic how the Eso1p, the protein fusion regulated in S.pombe, works. We have identified 2 forms of the Eso1 protein by Western blot, and detected the Eco1-homology fragment by M/S analysis following TAP purification of Eso1 protein. The result raises the possibility that Eso1 might be processed in vivo to release the Eco1-homology fragment, which allows the independent regulation of Rad30-homology and Eco1-homology fragments.
    Cell Biology International 05/2014; 38(5). DOI:10.1002/cbin.10230 · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During mitosis, protein kinases coordinate cellular reorganization and chromosome segregation to ensure accurate distribution of genetic information into daughter cells. Multiple protein kinases contribute to mitotic regulation, modulating molecular signaling more rapidly than possible with gene expression. However, a comprehensive understanding of how kinases regulate mitotic progression remains elusive. The challenge arises from multiple functions and substrates, a large number of "bystander" phosphorylation events, and the brief window in which all mitotic events transpire. Analog-sensitive alleles of protein kinases are powerful chemical genetic tools for rapid and specific interrogation of kinase function. Moreover, combining these tools with advanced proteomics and substrate labeling has identified phosphorylation sites on numerous protein targets. Here, we review the chemical genetic tools available to study kinase function and identify substrates. We describe how chemical genetics can also be used to link kinase function with cognate phosphorylation events to provide mechanistic detail. This can be accomplished by dissecting subsets of kinase functions and chemical genetic complementation. We believe a complete "chemical genetic toolbox" will ultimately allow a comprehensive understanding of how protein kinases regulate mitosis.
    Molecules 12/2012; 17(10):12172-86. DOI:10.3390/molecules171012172 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Faithful chromosome segregation during meiosis is indispensable to prevent birth defects and infertility. Canonical genetic manipulations have not been very useful for studying meiosis II, since mutations of genes involved in cell cycle regulation or chromosome segregation may affect meiosis I, making interpretations of any defects observed in meiosis II complicated. Here we present a powerful strategy to dissect meiosis I and meiosis II, using chemical inhibitors in genetically tractable model organism fission yeast (Schizosaccharomyces pombe). As various chemical probes are not active in fission yeast, mainly due to an effective multidrug resistance (MDR) response, we have recently developed a drug-hypersensitive MDR-sup strain by suppression of the key genes responsible for MDR response. We further developed the MDR-supML (marker-less) strain by deleting 7 MDR genes without commonly used antibiotic markers. The new strain makes fluorescent tagging and gene deletion much simpler, which enables effective protein visualization in varied genetic backgrounds. Using the MDR-supML strain with chemical inhibitors and live cell fluorescence microscopy, we established cell cycle arrest at meiosis I and meiosis II and examined Aurora-dependent spindle assembly checkpoint (SAC) regulation during meiosis. We found that Aurora B/Ark1 kinase activity is required for recruitment of Bub1, an essential SAC kinase, to unattached kinetochore in prometaphase I and prometaphase II as in mitosis. Thus, Aurora's role in SAC activation is likely conserved in mitosis, meiosis I, and meiosis II. Together, our MDR-supML strain will be useful to dissect complex molecular mechanisms in mitosis and 2 successive meiotic divisions.
    Cell cycle (Georgetown, Tex.) 03/2014; 13(8). DOI:10.4161/cc.28294 · 5.01 Impact Factor