Article

A genome-wide screen for interactions reveals a new locus on 4p15 modifying the effect of waist-to-hip ratio on total cholesterol.

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
PLoS Genetics (Impact Factor: 8.17). 10/2011; 7(10):e1002333. DOI: 10.1371/journal.pgen.1002333
Source: PubMed

ABSTRACT Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain ∼25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for variants that modify the relationship between known epidemiological risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA) data from 18 population-based cohorts with European ancestry (maximum N = 32,225). We collected 8 further cohorts (N = 17,102) for replication, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR) on total cholesterol (TC) with a combined P-value of 4.79×10(-9). There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes in adipose tissue. The effect of WHR on TC was strongest for individuals carrying two copies of G allele, for whom a one standard deviation (sd) difference in WHR corresponds to 0.19 sd difference in TC concentration, while for A allele homozygous the difference was 0.12 sd. Our findings may open up possibilities for targeted intervention strategies for people characterized by specific genomic profiles. However, more refined measures of both body-fat distribution and metabolic measures are needed to understand how their joint dynamics are modified by the newly found locus.

1 Follower
 · 
225 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: -Admixture mapping of lipids was followed-up by family-based association analysis to identify variants for cardiovascular disease in African-Americans. -The present study conducted admixture mapping analysis for total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides. The analysis was performed in 1,905 unrelated African-American subjects from the National Heart, Lung and Blood Institute's Family Blood Pressure Program. Regions showing admixture evidence were followed-up with family-based association analysis in 3,556 African-American subjects from the FBPP. The admixture mapping and family-based association analyses were adjusted for age, age(2), sex, body-mass-index, and genome-wide mean ancestry to minimize the confounding due to population stratification. Regions that were suggestive of local ancestry association evidence were found on chromosomes 7 (LDL-C), 8 (HDL-C), 14 (triglycerides) and 19 (total cholesterol and triglycerides). In the fine-mapping analysis, 52,939 SNPs were tested and 11 SNPs (8 independent SNPs) showed nominal significant association with HDL-C (2 SNPs), LDL-C (4 SNPs) and triglycerides (5 SNPs). The family data was used in the fine-mapping to identify SNPs that showed novel associations with lipids and regions including genes with known associations for cardiovascular disease. -This study identified regions on chromosomes 7, 8, 14 and 19 and 11 SNPs from the fine-mapping analysis that were associated with HDL-C, LDL-C and triglycerides for further studies of cardiovascular disease in African-Americans.
    Circulation Cardiovascular Genetics 12/2014; 8(1). DOI:10.1161/CIRCGENETICS.114.000481 · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 · 10-8 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS.
    PLoS ONE 10/2014; 9(10):e109290. DOI:10.1371/journal.pone.0109290 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.
    The American Journal of Human Genetics 06/2014; DOI:10.1016/j.ajhg.2014.05.010 · 10.99 Impact Factor