Article

Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1.

Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, Canada.
British Journal of Cancer (Impact Factor: 5.08). 11/2011; 105(11):1697-707. DOI: 10.1038/bjc.2011.427
Source: PubMed

ABSTRACT ANG1005 consists of three molecules of paclitaxel conjugated via ester bonds to the 19-amino-acid peptide Angiopep-2. The new chemical agent has been shown to cross the blood-brain barrier (BBB) by receptor-mediated transcytosis via low-density lipoprotein receptor-related protein 1 (LRP1). The experiments here examined the role of LRP1 in the subsequent endocytosis of drug into cancer cells.
Localisation of ANG1005 and Angiopep-2 was examined by immunohistochemistry and in-vivo near-infrared fluorescence imaging in mice carrying orthotopic glioma tumours. Transport of ANG1005 and Angiopep-2 was examined in U87 glioblastoma cell lines.
Systemically administered ANG1005 and Cy5.5Angiopep-2 localised to orthotopic glioma tumours in mice. The glioma transplants correlated with high expression levels of LRP1. Decreasing LRP1 activity, by RNA silencing or LRP1 competitors, decreased uptake of ANG1005 and Angiopep-2 into U87 glioblastoma cells. Conversely, LRP1 expression and endocytosis rates for ANG1005 and Angiopep-2 increased in U87 cells under conditions that mimicked the microenvironment near aggressive tumours, that is, hypoxic and acidic conditions.
ANG1005 might be a particularly effective chemotherapeutic agent for the wide array of known LRP1-expressing brain and non-brain cancers, in particular those with an aggressive phenotype.

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotensin (NT) has emerged as an important modulator of nociceptive transmission and exerts its biological effects through interactions with 2 distinct GPCRs, NTS1 and NTS2. NT provides strong analgesia when administered directly into the brain; however, the blood-brain barrier (BBB) is a major obstacle for effective delivery of potential analgesics to the brain. To overcome this challenge, we synthesized chemical conjugates that are transported across the BBB via receptor-mediated transcytosis using the brain-penetrant peptide Angiopep-2 (An2), which targets LDL receptor-related protein-1 (LRP1). Using in situ brain perfusion in mice, we found that the compound ANG2002, a conjugate of An2 and NT, was transported at least 10 times more efficiently across the BBB than native NT. In vitro, ANG2002 bound NTS1 and NTS2 receptors and maintained NT-associated biological activity. In rats, i.v. ANG2002 induced a dose-dependent analgesia in the formalin model of persistent pain. At a dose of 0.05 mg/kg, ANG2002 effectively reversed pain behaviors induced by the development of neuropathic and bone cancer pain in animal models. The analgesic properties of ANG2002 demonstrated in this study suggest that this compound is effective for clinical management of persistent and chronic pain and establish the benefits of this technology for the development of neurotherapeutics.
    The Journal of clinical investigation 02/2014; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine if the conjugation of a small receptor ligand to a peptidic carrier potentially facilitating the transport across the BBB by "Molecular Trojan Horse" transcytosis is feasible, we synthesized several transport peptide-fallypride-fusion molecules as model systems and determined their binding affinities to the hD2 receptor. Although being affected by conjugation, the binding affinities were found to be still in the nM range (between 1.5nM and 64.2nM). In addition, a homology modeling of the receptor and docking studies for the most potent compounds were performed elucidating the binding modes of the fusion molecules and the structure elements contributing to the observed high receptor binding. Furthermore, no interaction of the hybrid compounds and P-gp, the main excretory transporter of the BBB, were found. From these results it can be inferred that the approach to deliver small neuroreceptor ligands across the BBB by transport peptide carriers is feasible.
    Journal of Medicinal Chemistry 04/2014; · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-HER2 monoclonal antibodies (mAb) have been shown to reduce tumor size and increase survival in patients with breast cancer, but they are ineffective against brain metastases due to poor brain penetration. In previous studies, we identified a peptide, known as Angiopep-2 (An2), which crosses the blood-brain barrier (BBB) efficiently via receptor-mediated transcytosis, and, when conjugated, endows small molecules and peptides with this property. Extending this strategy to higher molecular weight biologics, we now demonstrate that a conjugate between An2 and an anti-HER2 mAb results in a new chemical entity, ANG4043, which retains in vitro binding affinity for the HER2 receptor and antiproliferative potency against HER2-positive BT-474 breast ductal carcinoma cells. Unlike the native mAb, ANG4043 binds LRP1 clusters and is taken up by LRP1-expressing cells. Measuring brain exposure after intracarotid delivery, we demonstrate that the new An2-mAb conjugate penetrates the BBB with a rate of brain entry (Kin) of 1.6 × 10-3 mL/g/s. Finally, in mice with intracranially implanted BT-474 xenografts, systemically administered ANG4043 increases survival. Overall, this study demonstrates that the incorporation of An2 to the anti-HER2 mAb confers properties of increased uptake in brain endothelial cells as well as BBB permeability. These characteristics of ANG4043 result in higher exposure levels in BT-474 brain tumors and prolonged survival following systemic treatment. Moreover, the data further validate the An2-drug conjugation strategy as a way to create brain-penetrant biologics for neuro-oncology and other CNS indications.
    Molecular Cancer Therapeutics 12/2014; · 6.11 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
Jun 1, 2014