Chemoprotection of ethylene glycol monoethyl ether-induced reproductive toxicity in male rats by kolaviron, isolated biflavonoid from Garcinia kola seed

Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
Human & Experimental Toxicology (Impact Factor: 1.41). 10/2011; 31(5):506-17. DOI: 10.1177/0960327111424301
Source: PubMed

ABSTRACT The present study investigated the protective effect of kolaviron, a biflavonoid from the seed of Garcinia kola, on ethylene glycol monoethyl ether (EGEE)-induced reproductive toxicity in male rats. The protective effect of kolaviron was validated using vitamin E, a standard antioxidant. EGEE was administered at a dose of 200 mg/kg. Other groups of rats were simultaneously treated with kolaviron (100 and 200 mg/kg) and vitamin E (50 mg/kg) for 14 days. EGEE treatment resulted in significant decrease in glutathione (GSH) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities but markedly increased the glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) activities in the testes. In the spermatozoa, administration of EGEE caused significant decrease in the activities of CAT, GPx, GST and LDH as well as in the level of GSH but significantly increased SOD activity with concomitant increase in hydrogen peroxide and malondialdehyde levels in both testes and spermatozoa. EGEE-exposed rats showed marked testicular degeneration with concomitant decrease in spermatozoa quantity and quality. Overall, EGEE causes reproductive dysfunction in rats by altering antioxidant systems in the testes and spermatozoa. Kolaviron or vitamin E exhibited protective effects against EGEE-induced male reproductive toxicity by enhancement of antioxidant status and improvement in spermatozoa quantity and quality.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: In Africa, Garcinia kola Heckel (Guttiferae) seed is commonly recommended in folklore medicine for the treatment of diabetes and its associated complications. Objective: The present study evaluated this traditional claim by mechanistic investigation into the effect of G. kola seed administration on renal, hepatic, and testicular oxidative damage in streptozotocin (STZ)-induced diabetic rats. Materials and methods: Diabetes mellitus was induced in adult male Wistar rats by an intraperitoneal injection of STZ (50 mg/kg). The diabetic rats were thereafter treated orally once per day with G. kola seed (250 mg/kg) and monitored for 14 d. Clinical observations, plasma biochemistry, hormonal profile, oxidative stress indices, sperm characteristics, and histopathological examination of the kidney, liver, and testes were evaluated to monitor treatment-related effects of G. kola seed in STZ-induced diabetic rats. Results and discussion: Garcinia kola seed administration significantly ameliorated hyperglycemia mediated damage by decreasing the blood glucose level (72.8% and 84.6% on the 7th and 14th post-treatment days, respectively), enhancement of the antioxidant system, inhibition of lipid peroxidation, and improving the architecture of the kidney, liver, and testes in STZ-induced diabetic rats. In addition, G. kola seed intervention restored the kidney and liver function biomarkers, the sperm characteristics as well as the plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, triiodothyronine (T3), and thyroxine (T4) to normal in STZ-induced diabetic rats. Conclusion: The findings from this investigation provide persuasive scientific support for the traditional use of G. kola seed in the treatment of diabetes and its associated complications.
    Pharmaceutical Biology 09/2014; DOI:10.3109/13880209.2014.937504 · 1.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated the response of testes, epididymides and sperm in pubertal Wistar rats following exposure to 0, 0.25, 0.5, 0.75, and 1.0 mg kg−1 functionalized multi-walled carbon nanotubes (f-MWCNTs) for 5 days. The results showed that administration of (f-MWCNTs) significantly increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in a dose-dependent manner in both testes and sperm compared with control group. Moreover, the significant decrease in the activity of glutathione-S-transferase and glutathione level was accompanied with significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm of (f-MWCNTs)-treated rats. The spermiogram of (f-MWCNTs)-treated rats indicated significant decrease in epididymal sperm number, sperm progressive motility, testicular sperm number and daily sperm production with elevated sperm abnormalities when compared with the control. Exposure to (f-MWCNTs) decreased plasma testosterone level and produced marked morphological changes including decreased geminal epithelium, edema, congestion, reduced spermatogenic cells and focal areas of tubular degeneration in the testes. The lumen of the epididymides contained reduced sperm cells and there was mild to severe hyperplasia epithelial cells lining the duct of the epididymis. Collectively, pubertal exposure of male rats to (f-MWCNTs) elicited oxidative stress response resulting in marked testicular and epididymides dysfunction. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
    Environmental Toxicology 11/2014; DOI:10.1002/tox.22067 · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. Bitter kola seed (Garcinia kola, family: Guttiferae) has been used as a social masticatory agent in Africa for several years and is believed to possess many useful medicinal properties. The present study evaluates the antioxidative, anti-inflammatory, and antilipidemic effects of kolaviron (an extract from the Garcinia kola seeds) in the blood of streptozotocin- (STZ) induced diabetic rats. Methods. Diabetic rats were treated with kolaviron (100 mg/kg b·wt) orally, five times a week for a period of six weeks. Serum glucose and HBA1C concentrations were estimated in experimental groups. The activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) (in erythrocytes) as well as plasma concentration of malondialdehyde (MDA), a product of lipid peroxidation, oxygen radical absorbing capacity (ORAC) and ferric-reducing antioxidant power (FRAP) were investigated. Serum levels of proinflammatory cytokines and growth factor: interleukin- (IL-) 1, monocyte chemotactic protein-1 (MCP-1), and vascular endothelial growth factor (VEGF), respectively, were also analyzed. Results. Kolaviron treatment markedly improved antioxidant status and abated inflammatory response evidenced by reduction in the levels of proinflammatory cytokines and growth factor, lipid peroxidation product, and the restoration of activities of erythrocyte antioxidant enzymes in the blood of diabetic rats. Conclusion. Kolaviron improved antioxidant status, reduced inflammation, and protected against hyperglycemic-induced oxidative damage in the blood of diabetic rats.
    The Scientific World Journal 03/2014; 2014:921080. DOI:10.1155/2014/921080 · 1.73 Impact Factor