Interrelationship of Runx2 and estrogen pathway in skeletal tissues.

Department of Biochemistry and Cell Biology, School of Medicine, WCU Program, Kyungpook National University, Daegu, Korea.
BMB reports (Impact Factor: 1.99). 10/2011; 44(10):613-8. DOI: 10.5483/BMBRep.2011.44.10.613
Source: PubMed

ABSTRACT Two key molecules in skeletal tissues are bone formation master transcription factor Runx2 and the steroid hormone estrogen. It is well known that these two molecules play pivotal roles in bone homeostasis; however, the functional interaction between Runx2 and estrogen synthesis in skeletal tissues is largely unknown. Recent studies have indicated that there is a positive relationship between Runx2 and the estrogen biosynthesis pathway. In this review, a possible functional link between Runx2 and estrogen synthesis pathway in skeletal tissues will be discusses as well as the biological significance of this interaction.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor-4 (FGF4) is expressed in embryonic stages and in adult tissues, where it plays critical roles in modulating multiple cellular functions. However, the exact roles of FGF4 on proliferation and differentiation of embryonic stem cells (ESCs) are not completely understood. Exogenous addition of FGF4 stimulated proliferation of mouse ESCs (mESCs), as proven by the increases in DNA synthesis and cell cycle regulatory protein induction. These increases were almost completely inhibited by pre-treating cells with anti-FGF4 antibody. FGF4 also activated c-Jun N-terminal kinase (JNK) and extracellular-signal regulated kinase (ERK) signaling, but not p38 kinase. Blockage of JNK signaling by SP600125 or by transfection with its specific siRNA significantly inhibited FGF4-stimulated cell proliferation through the suppression of c-Jun induction and activator protein-1 (AP-1) activity. However, ERK or p38 kinase inhibitor did not affect FGF4-stimulated proliferation in mESCs. FGF4 suppressed osteogenic differentiation of mESCs by inhibiting expression of transcription factors involved in bone formation. Further, exogenous FGF4 addition stimulated proliferation of human periodontal ligament stem cells (hPDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) via activation of ERK signaling. FGF4 also augmented mineralization of hPDLSCs, but not of BMMSCs. Collectively, it is suggested that FGF4 triggers proliferation of stem cells by activating MAPK-mediated signaling, while it affects differently osteogenic differentiation according to the origins of stem cells.
    PLoS ONE 08/2013; 8(8):e71641. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor-7 (FGF7) is known to regulate proliferation and differentiation of cells; however, little information is available on how FGF7 affects the differentiation of embryonic stem cells (ESCs). We examined the effects of FGF7 on proliferation and osteogenic differentiation of mouse ESCs. Exogenous FGF7 addition did not change the proliferation rate of mouse ESCs. In contrast, the addition of FGF7 facilitated the dexamethasone, ascorbic acid, and β-glycerophosphate (DAG)-induced increases in bone-like nodule formation and calcium accumulation. FGF7 also augmented mRNA expression of runt-related transcription factor-2 (Runx2), osterix, bone sialoprotein (BSP), and osteocalcin (OC) in the presence of DAG. FGF7-mediated increases in the mineralization and bone-specific gene expression were almost completely attenuated by pretreating with anti-FGF7 antibody. FGF7 treatment accelerated the DAG-induced activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in the cells. A pharmacological inhibitor specific to ERK, but not to JNK or p38 kinase, dramatically suppressed FGF7-mediated mineralization and accumulation of collagen and OC in the presence of DAG. This suppression was accompanied by the reduction in Runx2, osterix, BSP, and OC mRNA levels, which were increased by FGF7 in the presence of DAG. Collectively, our results suggest that FGF7 stimulates osteogenic differentiation, but not proliferation, in ESCs, by activating ERK/Runx2 signaling.
    Molecular and Cellular Biochemistry 10/2013; 382(1-2):37-45. · 2.39 Impact Factor


Available from