Article

Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy.

Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2011; 108(45):18488-93. DOI: 10.1073/pnas.1104807108
Source: PubMed

ABSTRACT Elucidating the key signal transduction pathways essential for both antipsychotic efficacy and side-effect profiles is essential for developing safer and more effective therapies. Recent work has highlighted noncanonical modes of dopamine D(2) receptor (D(2)R) signaling via β-arrestins as being important for the therapeutic actions of both antipsychotic and antimanic agents. We thus sought to create unique D(2)R agonists that display signaling bias via β-arrestin-ergic signaling. Through a robust diversity-oriented modification of the scaffold represented by aripiprazole (1), we discovered UNC9975 (2), UNC0006 (3), and UNC9994 (4) as unprecedented β-arrestin-biased D(2)R ligands. These compounds also represent unprecedented β-arrestin-biased ligands for a G(i)-coupled G protein-coupled receptor (GPCR). Significantly, UNC9975, UNC0006, and UNC9994 are simultaneously antagonists of G(i)-regulated cAMP production and partial agonists for D(2)R/β-arrestin-2 interactions. Importantly, UNC9975 displayed potent antipsychotic-like activity without inducing motoric side effects in inbred C57BL/6 mice in vivo. Genetic deletion of β-arrestin-2 simultaneously attenuated the antipsychotic actions of UNC9975 and transformed it into a typical antipsychotic drug with a high propensity to induce catalepsy. Similarly, the antipsychotic-like activity displayed by UNC9994, an extremely β-arrestin-biased D(2)R agonist, in wild-type mice was completely abolished in β-arrestin-2 knockout mice. Taken together, our results suggest that β-arrestin signaling and recruitment can be simultaneously a significant contributor to antipsychotic efficacy and protective against motoric side effects. These functionally selective, β-arrestin-biased D(2)R ligands represent valuable chemical probes for further investigations of D(2)R signaling in health and disease.

2 Followers
 · 
272 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2.
    PLoS ONE 10/2014; 9(10):e110310. DOI:10.1371/journal.pone.0110310 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of dopamine D2 receptors (D2R) modulates G protein/cAMP-dependent signaling and also engages Akt-GSK-3 signaling through D2R/β-arrestin 2 scaffolding of Akt and PP2A. This G protein-independent pathway may be important in mediating the antimanic effects of mood stabilizers and antipsychotics. The mood stabilizer lithium influences behavior and Akt/GSK-3 signaling in mice and many antipsychotics have been shown to more potently antagonize the activity of the β-arrestin-2 pathway relative to the G protein-dependent pathway. Cariprazine, an antipsychotic with potent D3R/D2R partial agonist activity and preferential binding to D3R, was investigated for its effects on the mediators of D2R pathways in vitro and its efficacy in animal models of mania. Effects on G protein-dependent activity were measured via inhibition of isoproterenol-induced cAMP production; effects on D2R/β-arrestin 2 signaling were determined using bioluminescence resonance energy transfer (BRET). Cariprazine was tested in vivo for antimanic-like activity, using the ouabain-induced hyperactivity model in rats. Cariprazine was more potent than aripiprazole in inhibiting isoproterenol-induced cAMP although both compounds showed similar maximum efficacy. In assays of D2R/β-arrestin 2-dependent interactions, cariprazine showed very weak partial agonist activity, unless the levels of receptor kinase were increased; as an antagonist it showed similar potency to haloperidol and ~fivefold greater potency than aripiprazole. In an animal model of mania, cariprazine showed similar efficacy as lithium in attenuating the effects of ouabain-induced hyperactivity. In summary, the differential effects of cariprazine on D2R G protein and β-arrestin 2 mediators of signal transduction pathways could contribute to its potent antimanic-like activity.
    02/2015; 3(1). DOI:10.1002/prp2.73
  • [Show abstract] [Hide abstract]
    ABSTRACT: The D1 dopamine receptor (D1R) has been implicated in numerous neuropsychiatric disorders, and D1R-selective ligands have potential as therapeutic agents. Previous studies have identified substituted benzazepines as D1R-selective agonists, but the in vivo effects of these compounds have not correlated well with their in vitro pharmacological activities. A series of substituted benzazepines, and structurally dissimilar D1R-selective agonists, were tested for their functional effects on D1R-mediated cAMP accumulation, D1R-promoted β-arrestin recruitment, and D1R internalization using live cell functional assays. All compounds tested elicited an increase in cAMP accumulation, albeit with a range of efficacies. However, when the compounds were evaluated for β-arrestin recruitment, a subset of substituted benzazepines, SKF83959, SKF38393, SKF82957, SKF77434, and SKF75670, failed to activate this pathway, whereas the others showed similar activation efficacies as seen with cAMP accumulation. When tested as antagonists, the five biased compounds all inhibited dopamine-stimulated β-arrestin recruitment. Further, D1R internalization assays revealed a corroborating pattern of bias activity in that the biased compounds failed to promote D1R internalization. Interestingly, the biased signaling was unique for the D1R, as the same compounds were agonists of the related D5 dopamine receptor (D5R), but revealed no signaling bias. We have identified a group of substituted benzazepine ligands that are agonists at D1R-mediated G-protein signaling, but antagonists of D1R recruitment of β-arrestin, and also devoid of agonist-induced receptor endocytosis. These data may be useful in interpretation of seemingly contrasting effects of these compounds in vitro vs. in vivo, and for further understanding of pathway-selective signaling of the D1R.
    ACS Chemical Neuroscience 02/2015; DOI:10.1021/acschemneuro.5b00020 · 4.21 Impact Factor

Full-text (2 Sources)

Download
62 Downloads
Available from
May 16, 2014