Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining.

Inorganic Chemistry and Catalysis Group, Debye Institute for NanoMaterials Science, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands.
Nature Chemistry (Impact Factor: 21.76). 11/2011; 3(11):862-7. DOI: 10.1038/nchem.1148
Source: PubMed

ABSTRACT Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  • [Show abstract] [Hide abstract]
    ABSTRACT: While cycling through a fluid catalytic cracking (FCC) unit, the structure and performance of FCC catalyst particles are severely affected. In this study, we set out to characterize the damage to commercial equilibrium catalyst particles, further denoted as ECat samples, and map the different pathways involved in their deactivation in a practical unit. The degradation was studied on a structural and a functional level. Transmission electron microscopy (TEM) of ECat samples revealed several structural features; including zeolite crystals that were partly or fully severed, mesoporous, macroporous, and/or amorphous. These defects were then correlated to structural features observed in FCC particles that were treated with different levels of hydrothermal deactivation. This allowed us not only to identify which features observed in ECat samples were a result of hydrothermal deactivation, but also to determine the severity of treatments resulting in these defects. For functional characterization of the ECat sample, the Brønsted acidity within individual FCC particles was studied by a selective fluorescent probe reaction with 4-fluorostyrene. Integrated laser and electron microscopy (iLEM) allowed correlating this Brønsted acidity to structural features by combining a fluorescence and a transmission electron microscope in a single set-up. Together, these analyses allowed us to postulate a plausible model for the degradation of zeolite crystals in FCC particles in the ECat sample. Furthermore, the distribution of the various deactivation processes within particles of different ages was studied. A rim of completely deactivated zeolites surrounding each particle in the ECat sample was identified by using iLEM. These zeolites, which were never observed in fresh or steam-deactivated samples, contained clots of dense structures. The structures are proposed to be carbonaceous deposits formed during the cracking process, and seem resistant towards burning off during catalyst regeneration.
    Chemistry 03/2013; 19(12):3846-59. · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A time-resolved in situ micro-spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid-catalytic-cracking (FCC) catalysts at the single particle level by applying the acid-catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components (zeolite, clay, alumina and silica) was monitored by UV/Vis micro-spectroscopy and showed that only clay and zeolites (Y and ZSM-5) contain Brønsted acid sites that are strong enough to catalyse the conversion of 4-fluorostyrene into carbocationic species. By applying the same approach to complete FCC catalyst particles, it has been found that the fingerprint of the zeolitic UV/Vis spectra is clearly recognisable. This almost exclusive zeolitic activity is confirmed by the fact that hardly any reactivity is observed for FCC particles that contain no zeolite. Confocal fluorescence microscopy images of FCC catalyst particles reveal inhomogeneously distributed micron-sized zeolite domains with a highly fluorescent signal upon reaction. By examining laboratory deactivated FCC catalyst particles in a statistical approach, a clear trend of decreasing fluorescence intensity, and thus Brønsted acidity, of the zeolite domains is observed with increasing severity of the deactivation method. By comparing the average fluorescence intensities obtained with two styrenes that differ in reactivity, it has been found that the Brønsted acid site strength within FCC catalyst particles containing ZSM-5 is more uniform than within those containing zeolite Y, as confirmed with temperature-programmed desorption of ammonia.
    Chemistry 12/2011; 18(4):1094-101. · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, preferably with subparticle resolution, is thus desired and vital to the development of efficient catalysts. It is challenging to measure the activity of single-nanoparticle catalysts, however. Several experimental approaches have been developed to monitor catalysis on single nanoparticles, including electrochemical methods, single-molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface-enhanced Raman spectroscopy. This review focuses on these experimental approaches, the associated methods and strategies, and selected applications in studying single-nanoparticle catalysis with chemical selectivity, sensitivity, or subparticle spatial resolution. Expected final online publication date for the Annual Review of Physical Chemistry Volume 65 is March 31, 2014. Please see for revised estimates.
    Annual Review of Physical Chemistry 01/2014; · 13.37 Impact Factor

Full-text (2 Sources)

Available from
Aug 23, 2014