Article

DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).

Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovakia.
Toxicology Letters (Impact Factor: 3.15). 01/2012; 208(1):76-81. DOI: 10.1016/j.toxlet.2011.10.005
Source: PubMed

ABSTRACT 3-methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min' incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diet may induce colon carcinogenesis through oxidative or alkylating DNA damage. However, diet may also contain anticarcinogenic compounds that contribute to cancer prevention. DNA damage prevention and/or induction of repair are two important mechanisms involved in cancer chemoprevention by dietary compounds. Hypericum sps. are widely used in traditional medicine to prepare infusions due to their beneficial digestive and neurologic effects. In this study, we investigated the potential of water extracts from three Hypericum sps. and some of their main phenolic compounds to prevent and repair oxidative and alkylating DNA damage in colon cells. The results showed that water extracts of Hypericum perforatum, Hypericum androsaemum, Hypericum undulatum, quercetin and rutin have protective effect against oxidative DNA damage in HT29 cells. Protective effect was also observed against alkylating DNA damage induced by methyl-methanesulfonate, except for H. androsaemum. With regard to alkylating damage repair H. perforatum, H. androsaemum and chlorogenic acid increased repair of alkylating DNA damage by base excision repair pathway. No effect was observed on nucleotide excision repair pathway.Antigenotoxic effects of Hypericum sps. may contribute to colon cancer prevention and the high amount of phenolic compounds present in Hypericum sps. play an important role in DNA protective effects.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 09/2012; 51:80–86. · 2.99 Impact Factor

Full-text

View
0 Downloads
Available from
Jul 30, 2014