Article

DNA alkylation lesions and their repair in human cells: Modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD)

Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovakia.
Toxicology Letters (Impact Factor: 3.36). 01/2012; 208(1):76-81. DOI: 10.1016/j.toxlet.2011.10.005
Source: PubMed

ABSTRACT 3-methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min' incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies.

0 Followers
 · 
127 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amongst DNA-repair processes, base-excision repair (BER) is the major mechanism for removal of DNA-base lesions caused by environmental genotoxicants. BER has been proven to exist in fish but has not been investigated in fish cell-lines, although these constitute increasingly important tools in eco-toxicological assessments. The present study aims at highlighting BER capacity of RTL-W1 and RTG-W1, two trout cell-lines used in eco-genotoxicity studies. This is realized by following the kinetics of strand-break repair after a short exposure to model genotoxicants-leading predominantly to BER-specific lesions-by means of the standard alkaline and Fpg-modified comet assays. Results show that both cell lines efficiently repair single-strand breaks and base-alkylation damages within 4h and 24h, respectively. Then, the study shows that after minor modifications of the protocol, the cell extract-based BERc assay can be used to evaluate the base-incision capacity of the cell lines and its variation after exposure of the cells to a model inhibitor of BER (3-aminobenzamide) and to environmental contaminants such as cadmium and tributyltin. This work provides a basis for the further development of DNA-repair activity in fish cell-lines as a new biomarker of genotoxicity.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 03/2013; DOI:10.1016/j.mrgentox.2013.03.004 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations.
    Frontiers in Genetics 08/2014; 5:288. DOI:10.3389/fgene.2014.00288
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diet may induce colon carcinogenesis through oxidative or alkylating DNA damage. However, diet may also contain anticarcinogenic compounds that contribute to cancer prevention. DNA damage prevention and/or induction of repair are two important mechanisms involved in cancer chemoprevention by dietary compounds. Hypericum sps. are widely used in traditional medicine to prepare infusions due to their beneficial digestive and neurologic effects. In this study, we investigated the potential of water extracts from three Hypericum sps. and some of their main phenolic compounds to prevent and repair oxidative and alkylating DNA damage in colon cells. The results showed that water extracts of Hypericum perforatum, Hypericum androsaemum, Hypericum undulatum, quercetin and rutin have protective effect against oxidative DNA damage in HT29 cells. Protective effect was also observed against alkylating DNA damage induced by methyl-methanesulfonate, except for H. androsaemum. With regard to alkylating damage repair H. perforatum, H. androsaemum and chlorogenic acid increased repair of alkylating DNA damage by base excision repair pathway. No effect was observed on nucleotide excision repair pathway.Antigenotoxic effects of Hypericum sps. may contribute to colon cancer prevention and the high amount of phenolic compounds present in Hypericum sps. play an important role in DNA protective effects.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 09/2012; 51:80–86. DOI:10.1016/j.fct.2012.09.014 · 2.61 Impact Factor

Full-text

Download
27 Downloads
Available from
Jul 30, 2014