Article

mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR.

Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
Molecular cell (Impact Factor: 14.46). 10/2011; 44(2):317-24. DOI: 10.1016/j.molcel.2011.09.005
Source: PubMed

ABSTRACT DEPTOR is a recently identified inhibitor of the mTOR kinase that is highly regulated at the posttranslational level. In response to mitogens, we found that DEPTOR was rapidly phosphorylated on three serines in a conserved degron, facilitating binding and ubiquitylation by the F box protein βTrCP, with consequent proteasomal degradation of DEPTOR. Phosphorylation of the βTrCP degron in DEPTOR is executed by CK1α after a priming phosphorylation event mediated by either the mTORC1 or mTORC2 complexes. Blocking the βTrCP-dependent degradation of DEPTOR via βTrCP knockdown or expression of a stable DEPTOR mutant that is unable to bind βTrCP results in mTOR inhibition. Our findings reveal that mTOR cooperates with CK1α and βTrCP to generate an auto-amplification loop to promote its own full activation. Moreover, our results suggest that pharmacologic inhibition of CK1 may be a viable therapeutic option for the treatment of cancers characterized by activation of mTOR-signaling pathways.

0 Bookmarks
 · 
157 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DEPTOR was reported as a naturally occurring inhibitor of mTORC1 and mTORC2. The role of DEPTOR in the growth and survival of pancreatic cancer cells has not previously been determined. Here we report that while DEPTOR shows a cytoplasmic expression in both normal pancreatic acinar and islet cells in a patchy manner, its expression is reduced in PanIN1 and PanIN2 and completely lost in 100 out of 101 pancreatic ductal adenocarcinoma (PDAC) tissues. Ectopic DEPTOR expression in two pancreatic cancer cell lines, Panc-1 and Miapaca-2, caused a significant 1) suppression of anchorage-dependent growth in monolayer culture, particularly under conditions with growth factor deprivation; 2) decreased clonogenic survival, and 3) suppressed anchorage-independent growth in soft agar. These effects are attributable to moderate induction of apoptosis and growth arrest at the S and G2/M phases, in a cell line dependent manner. Furthermore, ectopic DEPTOR expression moderately inhibited mTORC1 activity, as demonstrated by reduced phosphorylation of S6K, S6, and 4E-BP1. Taken together, these data suggest that DEPTOR has a tumor suppressive activity against pancreatic cancer cells, and its loss of expression may contribute to pancreatic tumorigenesis.
    Oncotarget 12/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An F-box protein, β-TrCP recognizes substrate proteins and destabilizes them through ubiquitin-dependent proteolysis. It regulates the stability of diverse proteins and functions as either a tumor suppressor or an oncogene. Although the regulation by β-TrCP has been widely studied, the regulation of β-TrCP itself is not well understood yet. In this study, we found that the level of β-TrCP1 is downregulated by various protein kinase inhibitors in triple-negative breast cancer (TNBC) cells. A PI3K/mTOR inhibitor PI-103 reduced the level of β-TrCP1 in a wide range of TNBC cells in a proteasome-dependent manner. Concomitantly, the levels of c-Myc and cyclin E were also downregulated by PI-103. PI-103 reduced the phosphorylation of β-TrCP1 prior to its degradation. In addition, knockdown of β-TrCP1 inhibited the proliferation of TNBC cells. We further identified that pharmacological inhibition of mTORC2 was sufficient to reduce the β-TrCP1 and c-Myc levels. These results suggest that mTORC2 regulates the stability of β-TrCP1 in TNBC cells and targeting β-TrCP1 is a potential approach to treat human TNBC.
    Experimental and Molecular Medicine 01/2015; 47:e143. DOI:10.1038/emm.2014.127 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian target of rapamycin (mTOR), which is now referred to as mechanistic target of rapamycin, integrates many signals, including those from growth factors, energy status, stress, and amino acids, to regulate cell growth and proliferation, protein synthesis, protein degradation, and other physiological and biochemical processes. The mTOR-Rheb-TSC-TBC complex co-localizes to the lysosome and the phosphorylation of TSC-TBC effects the dissociation of the complex from the lysosome and activates Rheb. GTP-bound Rheb potentiates the catalytic activity of mTORC1. Under conditions with growth factors and amino acids, v-ATPase, Ragulator, Rag GTPase, Rheb, hVps34, PLD1, and PA have important but disparate effects on mTORC1 activation. In this review, we introduce five models of mTORC1 activation by growth factors and amino acids to provide a comprehensive theoretical foundation for future research.
    International Journal of Molecular Sciences 11/2014; 15(11):20753-20769. DOI:10.3390/ijms151120753 · 2.46 Impact Factor

Full-text (2 Sources)

Download
18 Downloads
Available from
Jun 4, 2014